
BasicCard

The ZeitControl B

Declare Command &H40 &H10 _
GetBalance (Balance&)

Function CheckFunds (Withdrawal&)
Rem Check that the balance in the card
Rem is enough to cover the withdrawa

Status = GetBalance (Balance&)
If Status = swCommandOK Then
CheckFunds = (Balance& >= Withdrawal&)
Else

Call LogError (Status)
CheckFunds = False

End If
End Function

11101010011100101001001011001

1
0
0
1
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1

1

10100111001010010010010
Eeprom NumServices = 0
Type Service

Balance&
SecurityLevel

End Type
Eeprom Dynamic ServiceList() As Service
1
1
0
0
0
1
0
1
1
1
0
1
1
0

Command &H40 &H10 GetBalance (Balance&)
Rem Return the balance in the card

Balance& = 0
For I = 1 To NumServices

Balance& = Balance& + _
ServiceList(I).Balance&

Next I
End Command
0

010
1
1
0
0
0
1
1
0
0
0
1
0
1
1
0
1
1
1
1
0
0
0
0
0
1
0
1
1
0
1
0
1
0
1
1
0
1
1
1
0
1
0
0
1
0
1
0
001
asicC
l

1101010011010
ard Family

The ZeitControl BasicCard Family

Compact BasicCard

Enhanced BasicCard

Professional BasicCard

MultiApplication BasicCard

Document version 5.22.1

1st March 2005

Author: Tony Guilfoyle

e-mail: development@ZeitControl.de

Copyright© ZeitControl cardsystems GmbH
Siedlerweg 39

D-32429 Minden
Germany

Tel: +49 (0) 571-50522-0
Fax: +49 (0) 571-50522-99

Web sites:
http://www.ZeitControl.de
http://www.BasicCard.com

http://www.zeitcontrol.de/
http://www.basiccard.com/

Overview

Like most computer hardware, the price of smart cards is steadily decreasing, while performance and
capacity are improving all the time. You can now buy a fully-functional computer, the size of your
thumb-nail, for just a euro or two. However, before the BasicCard arrived, the cost of developing
software for smart cards was out of all proportion to the cost of the hardware. A typical development
project might take six months and cost a quarter of a million euros. This was a major barrier to the
widespread use and acceptance of smart cards.

But now you can program your own smart card in an afternoon, with no previous experience required.
If you can program in Basic, you can design and implement a custom smart card application. With
ZeitControl’s BasicCard, the development cycle of writing code, downloading, and testing takes a few
minutes instead of weeks.

This document describes ZeitControl’s BasicCard family: the Compact BasicCard, the Enhanced
BasicCard, and Professional BasicCard, and the MultiApplication BasicCard. A BasicCard contains
256-1768 bytes of RAM, and 1-31 kilobytes of user-programmable EEPROM. The EEPROM contains
the user’s Basic code, compiled into a virtual machine language known as P-Code (the Java
programming language uses the same technology). The user’s permanent data is also stored in
EEPROM, either as Basic variables, or in the BasicCard’s directory-based file system. The RAM
contains run-time data and the P-Code stack.

The smallest BasicCard, the Compact BasicCard, contains 1 kilobyte of EEPROM. How much Basic
code can you squeeze into this card? While no exact figure can be given, our experience suggests a
ratio of about 10-20 bytes of P-Code to every statement of Basic code. Assuming on average one
statement every two lines (for comments and blank lines), this works out at 100-200 lines of source
code. Some Professional BasicCards contain over 30 times as much EEPROM. The MultiApplication
BasicCard contains 31 kilobytes of EEPROM, allowing several sizeable Applications in a single card.

To create P-Code and download it to the BasicCard, you need ZeitControl’s BasicCard support
software. This software is free of charge, and can be downloaded at any time from ZeitControl’s
BasicCard page on the Internet (www.BasicCard.com). The support software runs under Microsoft®

Windows® 98 or later. With this support package, you can test your software even if you don’t have a
card reader, by simulating the BasicCard in the PC. The package contains a fully-functional Multiple
Debugger, that can run Terminal and BasicCard programs simultaneously. So you can try out your idea
for a smart card application without it costing you a cent.

The Smart Card Environment
Obviously, programming a smart card is not the same as programming a desktop computer. It has no
keyboard or screen, for a start. So how does a smart card receive its input and communicate its output?
It talks to the outside world through its bi-directional I/O contact. Communication takes place at 9600
baud or more, according to the T=0 and T=1 protocols defined in ISO/IEC standards 7816-3 and 7816-
4. But this is completely invisible to the Basic programmer – all you have to do is define a command in
the card, and program it like an ordinary Basic procedure. Then you can call this command from a ZC-
Basic program running on the PC. Again, the command is called as if it was an ordinary procedure.

The BasicCard operating system takes care of all the communications for you. It will even encrypt and
decrypt the commands and responses if you ask it to. All you have to do is specify a different two-byte
ID for each command that you define. (If you are familiar with ISO/IEC 7816-4: Interindustry
commands for interchange, you will know these two bytes as CLA and INS, for Class and Instruction.)

Here is a simple example. Suppose you run a discount warehouse, and you are issuing the BasicCard to
members to store pre-paid credits. You will want a command that returns the number of credits left in
the card. So you might define the command GetCustomerCredits, and give it an ID of &H20 &H02
(&H is the hexadecimal prefix):

http://www.basiccard.com/

Eeprom CustomerCredits ′ Declare a permanent Integer variable
Command &H20 &H02 GetCustomerCredits (Credits)

Credits = CustomerCredits
End Command

You can call this command from the PC with the following code:

Const swCommandOK = &H9000
Declare Command &H20 &H02 GetCustomerCredits (Credits)
Status = GetCustomerCredits (Credits)
If Status <> swCommandOK Then GoTo CancelTransaction

The value &H9000 is defined in ISO/IEC 7816-4 as the status code for a successful command. This
value is automatically returned to the caller unless the ZC-Basic code specifies otherwise. The return
value from a command should always be checked, even if the command itself has no error conditions –
for instance, the card may have been removed from the reader.

It’s as simple as that. Of course, there is a lot more going on below the surface, but you don’t have to
know about it to write a BasicCard application.

Technical Summary
All BasicCard families (Compact, Enhanced, Professional, and MultiApplication) contain:

• a full implementation of the T=1 block-level communications protocol defined in ISO/IEC
7816-3: Electronic signals and transmission protocols, including chaining, retries, and WTX
requests;

• a command dispatcher built around the structures defined in ISO/IEC 7816-4: Interindustry
commands for interchange (CLA INS P1 P2 [Lc IDATA] [Le]);

• built-in commands for loading EEPROM, enabling encryption, etc.;
• a Virtual Machine for the execution of ZeitControl’s P-Code;
• code for the automatic encryption and decryption of commands and responses, using the AES,

DES, or SG-LFSR symmetric-key algorithm.

Enhanced BasicCards contain in addition:
• a directory-based, DOS-like file system;
• IEEE-compatible floating-point arithmetic.

The functionality of the Enhanced BasicCard family can be further extended using Plug-In Libraries.

Professional BasicCards contain all the above, plus:
• a Public-Key algorithm (RSA or EC);
• a full implementation of the T=0 byte-level communications protocol defined in ISO/IEC

7816-3: Electronic signals and transmission protocols;
• the SHA-1 Secure Hash Algorithm.

The MultiApplication BasicCard (and some Professional BasicCards) contain all the above, plus
cryptographic algorithms EAX (for Authenticated Encryption) and OMAC (for Message
Authentication) and the SHA-256 Secure Hash Algorithm.

The data sheet on the next two pages contains details of available BasicCards versions, and the
cryptographic algorithms that they support.

Development Software
The ZeitControl MultiDebugger software support package consists of:
• ZCPDE, the Professional Development Environment;
• ZCMDTERM and ZCMDCARD, debuggers for Terminal programs and BasicCard programs;
• ZCMBASIC, the compiler for the ZC-Basic language;
• ZCMSIM, for low-level simulation of Terminal and BasicCard programs;
• BCLOAD, for downloading P-Code to the BasicCard;
• KEYGEN, a program that generates random keys for use in encryption;
• BCKEYS, for downloading cryptographic keys to the Compact and Enhanced BasicCards.

BasicCard Versions
Compact BasicCard

Version EEPROM RAM Protocol Encryption Floating-Point Support File System

ZC1.1 1K 256 bytes T=1 SG-LFSR None No

Enhanced BasicCard
Version EEPROM RAM Protocol Encryption Extras FP Support File System

ZC3.1 2K 256 bytes T=1 DES Full Yes

ZC3.2 4K 256 bytes T=1 DES Full Yes

ZC3.31 8K 256 bytes T=1 DES Full Yes

ZC3.4 16K 256 bytes T=1 DES Full Yes

ZC3.5 6K 256 bytes T=1 DES EC-FSA1 Full Yes

ZC3.6 14K 256 bytes T=1 DES EC-FSA1 Full Yes

ZC3.7 2K 256 bytes T=1 DES Full Yes

ZC3.8 4K 256 bytes T=1 DES Full Yes

ZC3.9 8K 256 bytes T=1 DES Full Yes
1 EC-FSA: Fast Signature Algorithm for Elliptic Curve Cryptography

Plug-In Libraries for the Enhanced BasicCard: EC-161, AES, SHA-1, IDEA

Professional BasicCard1

Version PK Algorithm EEPROM RAM Protocol Encryption Extras FP Support File System
ZC4.5A RSA 30K 1K T=0, T=1 AES SHA-1 Partial2 Yes

ZC4.5D RSA 30K 1K T=0, T=1 DES SHA-1 Partial2 Yes

ZC5.4 EC-167 16K 1K T=0, T=1 AES & DES SHA-1 Full Yes

ZC5.5 EC-211 31K 1.7K T=0, T=1 EAX/OMAC/
AES/DES SHA-256 Full Yes

1 See Professional and MultiApplication BasicCard Datasheet for more information
2 Single-to-String conversion not supported

MultiApplication BasicCard1

Version PK Algorithm EEPROM RAM Protocol Encryption Extras FP Support File System

ZC6.5 EC-211 31K 1.7K T=0, T=1 EAX/OMAC/
AES/DES SHA-256 Full Yes

1 See Professional and MultiApplication BasicCard Datasheet for more information

Algorithms and Protocols
Public-Key Algorithms

Name Description Key size Reference

RSA Rivest-Shamir-Adleman algorithm 1024 bits

EC-211 Elliptic Curve Cryptography over the field GF(2211) 211 bits

EC-167 Elliptic Curve Cryptography over the field GF(2167) 167 bits

EC-161 Elliptic Curve Cryptography over the field GF(2168) 161 bits

IEEE P1363: Standard
Specifications for Public
Key Cryptography

Symmetric-Key Algorithms

Name Description Key size Reference

EAX Encryption with Authentication
for Transfer (using AES)

128/192/
256 bits

EAX: A Conventional Authenticated-
Encryption Mode1

M. Bellare, P. Rogaway, D. Wagner

OMAC One-Key CBC-MAC (using
AES)

128/192/
256 bits

OMAC: One-Key CBC MAC1

Tetsu Iwata and Kaoru Kurosawa
Department of Computer and

Information Sciences, Ibaraki
University

4–12–1 Nakanarusawa, Hitachi,
Ibaraki 316-8511, Japan

AES Advanced Encryption Standard 128/192/
256 bits

Federal Information Processing Standard
FIPS 197

DES Data Encryption Standard 56/112/168
bits

ANSI X3.92-1981: Data Encryption
Algorithm

SG-LFSR Shrinking Generator – Linear
Feedback Shift Register

64 bits D. Coppersmith, H. Krawczyk, and Y.
Mansour, The Shrinking Generator,
Advances in Cryptology – CRYPTO ’93
Proceedings, Springer-Verlag, 1994

IDEA International Data Encryption
Algorithm

128 bits X. Lai, On the Design and Security of
Block Ciphers, ETH Series in
Information Processing, v. 1, Konstanz:
Hartung-Gorre Verlag, 1992

1 These documents are available at http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

Data Hashing Algorithms

Name Description Reference

SHA-256 Secure Hash Standard Federal Information Processing Standard FIPS 180-2

SHA-1 Secure Hash Algorithm, revision 1

Communication Protocols

Name Description Reference

T=0 Byte-level transmission protocol

T=1 Block-level transmission protocol

ISO/IEC 7816-3: Electronic signals and
transmission protocols

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

1

Contents

Part I: User’s Guide
1. The BasicCard 6

1.1 Processor Cards 6
1.2 Programmable Processor Cards 7
1.3 BasicCard Features 8
1.4 BasicCard Programs 9
1.5 BasicCard Program Layout 9
1.6 The Compact BasicCard 12
1.7 The Enhanced BasicCard 12
1.8 The Professional BasicCard 12
1.9 The MultiApplication BasicCard 13

2. The Terminal 14
2.1 The Terminal Program 14
2.2 Terminal Program Layout 14

3. The ZC-Basic Language 17
3.1 The Source File 17
3.2 Tokens 17
3.3 Pre-Processor Directives 19
3.4 Data Storage 22
3.5 Data Types 23
3.6 Arrays 23
3.7 Data Declaration 24
3.8 User-Defined Types 25
3.9 Expressions 26
3.10 Assignment Statements 29
3.11 Program Control 29
3.12 Procedure Definition 33
3.13 Procedure Declaration 35
3.14 Procedure Calls 37
3.15 Procedure Parameters 38
3.16 Built-in Functions 39
3.17 Encryption 41
3.18 Random Number Generation 44
3.19 Error Handling 45
3.20 BasicCard-Specific Features 45
3.21 Terminal-Specific Features 48
3.22 Miscellaneous Features 52
3.23 Technical Notes 53

22

4. Files and Directories 55
4.1 Directory-Based File Systems 55
4.2 The BasicCard File System 56
4.3 File System Commands 57
4.4 Directory Commands 58
4.5 Creating and Deleting Files 62
4.6 Opening and Closing Files 62
4.7 Writing To Files 64
4.8 Reading From Files 65
4.9 File Locking and Unlocking 66
4.10 Miscellaneous File Operations 68
4.11 File Definition Sections 68
4.12 The Definition File FILEIO.DEF 69

5. The MultiApplication BasicCard 71
5.1 Components 71
5.2 Applications 72
5.3 Special Files 73
5.4 Application Loader Definition Section 74
5.5 Secure Transport 80
5.6 Secure Messaging 81
5.7 File Authentication 82
5.8 Component Details 85

6. Support Software 89
6.1 Hardware Requirements 89
6.2 Installation 89
6.3 File Types 89
6.4 Physical and Virtual Card Readers 91
6.5 Windows®-Based Software 91
6.6 The ZCPDE Professional Development Environment 93
6.7 The ZCMDTERM Terminal Program Debugger 95
6.8 The ZCMDCARD BasicCard Program Debugger 97
6.9 Command-Line Software 99

7. System Libraries 107
7.1 RSA: The Rivest-Shamir-Adleman Library 108
7.2 AES: The Advanced Encryption Standard Library 111
7.3 The Elliptic Curve Libraries 112
7.4 The COMPONENT Library 118
7.5 The EAX Library 120
7.6 The OMAC Library 121
7.7 SHA: The Secure Hash Algorithm Library 121
7.8 IDEA: International Data Encryption Algorithm 123
7.9 MATH: Mathematical Functions 123
7.10 MISC: Miscellaneous Procedures 124

3

Part II: Technical Reference
8. Communications 130

8.1 Overview 130
8.2 Answer To Reset 130
8.3 The T=0 Protocol 131
8.4 The T=1 Protocol 136
8.5 Commands and Responses 137
8.6 Status Bytes SW1 and SW2 138
8.7 Pre-Defined Commands 142
8.8 The Command Definition File COMMANDS.DEF 179

9. Encryption Algorithms 183
9.1 The DES Algorithm 183
9.2 Implementation of DES in the BasicCard 184
9.3 Certificate Generation Using DES 188
9.4 The AES Algorithm 188
9.5 Implementation of AES in the Professional BasicCard 188
9.6 The EAX Algorithm 191
9.7 Implementation of EAX in the BasicCard 192
9.8 The OMAC Algorithm 193
9.9 Implementation of OMAC in the BasicCard 194
9.10 The SG-LFSR Algorithm 195
9.11 Implementation of SG-LFSR in the Compact BasicCard 196
9.12 SG-LFSR with CRC 197
9.13 Encryption – a Worked Example 197

10. The ZC-Basic Virtual Machine 205
10.1 The BasicCard Virtual Machine 205
10.2 The Terminal Virtual Machine 206
10.3 The P-Code Stack 206
10.4 Run-Time Memory Allocation 207
10.5 Data Types 207
10.6 P-Code Instructions 208
10.7 The SYSTEM Instruction 215

11. Output File Formats 219
11.1 ZeitControl Image File Format 219
11.2 ZeitControl Debug File Format 224
11.3 Application File Format 228
11.4 List File Format 229
11.5 Map File Format 231

Index 233

Part I

User’s Guide

6

1. The BasicCard

1.1 Processor Cards
A processor card looks like this:

Most of this is just plastic. The important part is the metallic contact area:

This area has the same layout as a standard telephone card. However, a telephone card contains only
memory, while a processor card contains a CPU as well – in effect, a complete miniature computer. A
typical processor card today might contain 16-64 kilobytes of ROM (Read-Only Memory) for the
operating system machine code, 8-32 kilobytes of EEPROM (Electrically Erasable, Programmable
Read-Only Memory) for the data in the card, and 256-2048 bytes of RAM (Random Access Memory).
The EEPROM is the ‘hard disk’ of the card – data written to EEPROM retains its value when the card
is powered down.

The single most important aspect of processor card design is security. That’s what processor cards are
for. If I want to make telephone calls for free, I can buy the equipment to make my own telephone
cards – but the reward is not proportional to the effort required (not to mention the risk of detection).
But if those telephone cards contained real money, instead of just telephone credits, there would be
plenty of people working on making illegal copies.

So for cards that contain so-called electronic cash that can be spent like real money, a processor card is
required. The processor protects access to the memory, using tamper-proof hardware design coupled
with high-security software algorithms.

Acme
Processor Cards

Inc.

1.2 Programmable Processor Cards

7

Communication with a processor card is by means of a command-response protocol. When a card is
inserted in the reader, a command-response session is initiated:

Terminal Card Reader Processor Card

Reset Card

Answer To Reset (ATR)

Command

Response

Command

Response

etc.

The processor card is the passive partner in this exchange. After sending the Answer To Reset, it does
nothing until it receives a command from the Terminal. Then after sending the response to this
command, it waits passively for the next command, and so on. The command-response protocol used
by most processor cards is defined in the ISO standard documents ISO/IEC 7816-3: Electronic signals
and transmission protocols and ISO/IEC 7816-4: Interindustry commands for interchange. These
documents are summarised in Chapter 8: Communications.

1.2 Programmable Processor Cards
Until recently, programming a processor card was a major undertaking. The following skills were
involved:

• Assembly language programming. Although ‘C’ compilers were available for some processor
cards, it was not possible to write the whole operating system in ‘C’.

• Byte-level communication protocols, such as the T=0 protocol.

• Block-level communication protocols at the command-response level.

• Programming at the hardware level for writing to EEPROM.

• Security algorithms. You had to write your own.

You would also need a complex (and expensive) development environment. And on top of everything,
after submitting your program to the chip manufacturer, you would have to wait for two or three
months, while it was burned into ROM in several thousand chips, before you could test it in a real card.

However, the situation has improved. Programmable processor cards are now available. The heart of a
programmable processor card is its P-Code interpreter. You write a program for the card, in Java or
Basic (the two languages currently available on the market). This is compiled into so-called P-Code,
which is a machine-independent language that looks like machine code. The P-Code is downloaded to
the card, where it is executed by the interpreter. And if your code doesn’t work first time, you can
download a new version into the same card. So the development cycle is closer to what most
programmers are used to.

Acme
Processor Cards

Inc.

1. The BasicCard

88

1.3 BasicCard Features
The BasicCard is a programmable processor card, with a P-Code interpreter optimised for executing
programs written in Basic. It was designed with four criteria in mind at all times. It had to be:

Inexpensive The development software is free of charge – you can download the latest version
from our web site at any time at www.BasicCard.com. And most versions of the
BasicCard cost less than half as much as other currently-available programmable
processor cards.

Easy to program Everybody can program in Basic – or if they can’t, they can pick it up in an
afternoon. That’s all you need to program the BasicCard. A command from the
Terminal to the BasicCard is defined and called just like a Basic function. The file
system in the BasicCard looks just like a regular diskette. Encryption has been made
as simple as possible to implement – you just turn it on or off. And EEPROM data is
read and written just like RAM data.

Secure State-of-the-art cryptographic algorithms are available for all BasicCard types:

Professional and MultiApplication BasicCards
• public-key cryptography: RSA, or EC over GF(2167) or GF(2211)
• AES Advanced Encryption Standard and DES Data Encryption Standard
• Secure Hash Algorithm SHA-1 or SHA-256
• Provably secure modes of operation EAX for Authenticated Encryption and

OMAC for Message Authentication (BasicCards ZC5.5 and ZC6.5 only)

Enhanced BasicCard
• DES Data Encryption Standard
• Plug-In Libraries: AES, SHA-1, EC over GF(2168), and the IDEA International

Data Encryption Algorithm

Compact BasicCard
• the Shrinking Generator algorithm designed by D. Coppersmith, H. Krawczyk,

and Y. Mansour – see 9.10 The SG-LFSR Algorithm for details

The security of the BasicCard implementation is enhanced by our cryptographic key
generation program – see 6.9.4 The Key Generator KEYGEN.EXE.

ISO-compliant In the ZC-Basic programming language, defining your own ISO-compliant command
is as easy as declaring a function. Just as importantly, ISO-defined commands, such
as SELECT FILE and READ RECORD, can be programmed in ZC-Basic. So you
can implement your own ISO card, or call an existing ISO card from a ZC-Basic
Terminal program. See 8.5 Commands and Responses for more information.

The operating systems in all BasicCards contain the following features:

• A full implementation of the T=1 communications protocol defined in ISO/IEC 7816-3:
Electronic signals and transmission protocols, including chaining, retries, and WTX requests. The
Professional and MultiApplication BasicCards contain the T=0 protocol as well.

These protocols define the structure and duration of the bits and bytes that constitute the messages
in a command-response session. See 8.3 The T=0 Protocol and 8.4 The T=1 Protocol for more
information.

• Pre-defined commands for downloading programs and data to the BasicCard, enabling automatic
encryption, etc.
These commands are described in 8.7 Pre-Defined Commands.

• A Virtual Machine for the execution of ZeitControl’s P-Code.
The compiler ZCMBASIC compiles ZC-Basic source code into P-Code, an intermediate language
that can be thought of as the machine code for a Virtual Machine. (The Java programming
language uses the same technology, although the P-Code instruction set is not the same.) The
P-Code is downloaded to the card using the BCLOAD Card Loader program. Then the Virtual
Machine in the BasicCard executes the P-Code instructions at run-time.

www.BasicCard.com

1.4 BasicCard Programs

9

1.4 BasicCard Programs

1.4.1 Applications
BasicCard programs are written in the ZC-Basic language, which is a modern procedure-oriented
Basic, with special features for the processor card environment. It is described in Chapter 3: The ZC-
Basic Language.

A BasicCard program is specified in a single source file (which may, however, include other source
files). This file will typically have a .BAS extension. It consists of a set of Commands, with associated
files and data.

Single-application BasicCards (Compact, Enhanced, and Professional) can contain only a single
Application; all Commands in the Application’s Command set have Read and Write access to all the
associated files and data.

A MultiApplication BasicCard can contain up to 128 different Applications, each with its own
Command set and associated data. Associated data is accessible only by its own Application. Files,
however, can be accessed for Reading or Writing by any Application that has the necessary permission.

1.4.2 Image Files
The compiler can create a ZeitControl Image File (with .IMG extension) from your BasicCard program
source file. This image file can then be downloaded to a BasicCard; or it can be run in the ZCMSIM
P-Code interpreter together with a Terminal Program – see 6.9.2 The P-Code Interpreter
ZCMSIM.EXE for details.

1.4.3 Debug Files
If the BasicCard Application is to be run in the ZCMDCARD BasicCard debugger, the compiler must
create a ZeitControl Debug File (with .DBG extension). This is simply a ZeitControl Image File with
symbolic debugging information included. Image files and debug files are described in Chapter 11:
Output File Formats.

1.4.4 Card Program Files
The ZCMDCARD BasicCard debugger works with simulated BasicCards. A simulated card is
described by a Card Program File, with extension .ZCC. This file contains the simulated EEPROM,
which retains its contents between program runs, and various other data, such as source filename of
each Application, the BasicCard version, and compiler options. A single source file may be the basis
for several Card Program files, each running the same program, but with different data stored in
simulated EEPROM.

1.5 BasicCard Program Layout
A BasicCard program consists of initialisation code and procedure definitions. Programs for the
Enhanced, Professional, and MultiApplication BasicCards can also contain optional file definition
sections.

1.5.1 Initialisation Code
The first block of code that is not contained inside a procedure definition is initialisation code. In a
single-application BasicCard, this initialisation code gets executed when the first user-defined
command is called from the Terminal. In the MultiApplication BasicCard, an Application’s
initialisation code is executed whenever the Application is selected.

Initialisation code is not required, but it can be useful for certain things; for instance, checking that the
card has not been cancelled by the issuer, or that the expected files and directories are present.

1. The BasicCard

1010

1.5.2 Procedure Definitions
ZC-Basic has three types of procedure: subroutines, functions, and commands. Each procedure is self-
contained – nested procedure definitions are not allowed, and GoTo and GoSub statements can only
transfer control to labels within the current procedure. Subroutines and functions are familiar to Basic
programmers – a subroutine is a block of code that can be called from other procedures, and a function
is a subroutine that returns a value. The command, however, is special to ZC-Basic; it is the mechanism
by which the Terminal program communicates with the BasicCard program.

According to the ISO standard document ISO/IEC 7816-4: Interindustry commands for interchange,
each command is assigned a unique two-byte ID. This is all the ZC-Basic programmer needs to know
about ISO standards. For the curious, these two bytes are known as CLA and INS (for Class and
Instruction); the full command-response protocol defined in the standard is described in 8.5
Commands and Responses. The two-byte ID must be supplied between the Command keyword and
the name of the command. Here is an example (&H is the hexadecimal prefix):

Command &H80 &H10 GetCustomerName (Name$)
Name$ = CustomerName$

End Command

Then whenever the BasicCard receives a command from the Terminal with CLA = &H80 and
INS = &H10, the operating system in the card automatically executes the GetCustomerName
command.

A command behaves like a cross between a function and a subroutine: it is defined like a subroutine (as
above), but called like a function (see 2.2 Terminal Program Layout). The BasicCard operating
system fills in the return value that gets passed back to the Terminal program. This return value
consists of the two status bytes SW1 and SW2 defined in ISO/IEC 7816-4. The return value of a
command should always be checked; for instance, the card may have been removed from the reader, or
the reader may have lost power for some reason. If SW1 = &H90 and SW2 = &H00, or if
SW1 = &H61, then the command completed successfully. Otherwise a problem has occurred that
prevented successful execution of the command.

These two status bytes are available as pre-defined variables in the BasicCard, so you can define your
own error codes. For convenience of access, the two-byte Integer variable SW1SW2 is also defined.
For instance:

Eeprom Balance As Long : Rem Declare permanent (Eeprom) variable
Const InsufficientCredit = &H6F00
Command &H80 &H20 DebitAccount (Amount As Long)

If Balance < Amount Then
SW1SW2 = InsufficientCredit

Else
Balance = Balance - Amount

End If
End Command

Notes:

• You don’t need to specify SW1 and SW2 if the command completes successfully. They are set to
&H90 and &H00 before the command is called.

• If you specify values for SW1 and SW2 other than the two indicators of successful completion
(SW1SW2 = &H9000 or SW1 = &H61), the operating system throws away the response data and
just returns the two status bytes to the Terminal program. (This is in accordance with ISO/IEC
7816-4.) In the Professional and MultiApplication BasicCards, you can override this behaviour –
see 3.3.4 The #Pragma Directive and 7.10.8 SW1-SW2 Processing for details.

• Your own SW1-SW2 error codes can take any values. However, for ISO compliance, or if you are
programming a Professional BasicCard that uses the T=0 protocol, the high nibble of SW1 must
be 6, i.e. SW1 = &H6X. You should also avoid assigning new meanings to ZC-Basic’s own error
codes. ZC-Basic’s error codes are listed in 8.6 Status Bytes SW1 and SW2; you can avoid any
clashes if you use SW1 = &H6B or &H6F (except SW1-SW2=&H6F00).

1.5 BasicCard Program Layout

11

1.5.3 File Definition Sections
The Enhanced, Professional, and MultiApplication BasicCards contain a Windows®-like file system,
with directories organised in a tree structure. There are several ways to access BasicCard files and
directories.
• From within the BasicCard itself, files can be created, read, and written with exactly the same

statements that you would use in a Basic program running under DOS or Windows®. There are
also some special statements for setting access conditions on files and directories, to restrict access
from Terminal programs and from other Applications. These access conditions can depend on
cryptographic keys, user passwords, etc.

• From a Terminal program, the BasicCard looks just like a diskette, with the special drive name
“@:”. If the access conditions permit it, you can create, read, and write files and directories in the
BasicCard as if it was a floppy disk.

• You can initialise directory structures and files in a BasicCard program with File Definition
Sections – see 4.11 File Definition Sections. In a MultiApplication BasicCard program, a File
Definition Section can also contain Component definitions and Application Loader commands.
See 5.4 Application Loader Definition Section for more information.

1.5.4 Permanent Data
Most BasicCard applications will contain permanent data, that retains its value while the BasicCard is
powered down. Permanent data is stored in EEPROM (Electrically Erasable, Programmable Read-Only
Memory). In most BasicCards, you can store permanent data in files; but it is often simpler (and in the
Compact BasicCard it is compulsory) to store permanent data in Eeprom variables, particularly if the
length of the data is fixed. An example of an Eeprom variable was given in the previous section:

Eeprom Balance As Long : Rem Declare permanent (Eeprom) variable

The variable Balance declared here can be read or written just like a regular variable. Eeprom strings
and arrays can also be declared. This can be a very convenient way of storing permanent data, in all
types of BasicCard. Note, however, that in the MultiApplication BasicCard, Eeprom data can only be
accessed by the Application that declares it; data to be shared between Applications must be file-based.

Writing to EEPROM can take up to 6 milliseconds, so the possibility is always present that the card
will lose power in the middle of the write operation. The Enhanced, Professional, and MultiApplication
BasicCards automatically log all EEPROM write operations, to enable them to recover in the event of
power loss. The Compact BasicCard has no such recovery mechanism, so EEPROM data may be left in
an inconsistent state. In the Compact BasicCard, therefore, important Eeprom data should be
duplicated to protect against possible corruption if the card is powered down during an EEPROM write
operation. For example:

Eeprom Balance As Long : Rem A very important piece of data
Eeprom ShadowBalance As Long
Eeprom Committed = False

Command &H80 &H30 ChangeBalance (NewBalance As Long)
ShadowBalance = NewBalance
Committed = True
Balance = ShadowBalance
Committed = False

End Command

Then in the initialisation code:

If Committed Then
Balance = ShadowBalance
Committed = False

End If

This technique guarantees that Balance will never be left in an inconsistent state.

Note: In the Compact BasicCard, power loss during memory allocation can lead to corruption of the
EEPROM heap. For this reason, we recommend that you avoid ReDim statements and assignment of

1. The BasicCard

1212

variable-length strings in all Compact BasicCard code that may be executed after the card is issued to
the end user.

1.6 The Compact BasicCard
A single version of the Compact BasicCard is available:

BasicCard ZC1.1 Contains 1K of user-programmable EEPROM. Available since June 1998.

The Compact BasicCard is no longer being manufactured, and is only available as long as stocks last.

1.7 The Enhanced BasicCard
The original Enhanced BasicCard – the Series 2 Enhanced BasicCard – is no longer supported. The
current Enhanced BasicCard is the Series 3 Enhanced BasicCard:

BasicCard ZC3.1 Contains 2K of user-programmable EEPROM. Available in large quantities
only – contact ZeitControl for details.

BasicCard ZC3.2 Contains 4K of user-programmable EEPROM. Available in large quantities
only – contact ZeitControl for details.

BasicCard ZC3.3 Contains 8K of user-programmable EEPROM. Available since December
1999.

BasicCard ZC3.31 Functionally identical to BasicCard ZC3.3.

BasicCard ZC3.4 Contains 16K of user-programmable EEPROM. Available since December
1999.

BasicCard ZC3.5 Contains 6K of user-programmable EEPROM, and the Elliptic Curve Fast
Signature Algorithm (EC-FSA). Available since February 2000.

BasicCard ZC3.6 Contains 14K of user-programmable EEPROM, and the Elliptic Curve Fast
Signature Algorithm (EC-FSA). Available since February 2000.

The two EC-FSA cards contain a proprietary algorithm that can generate a 161-bit Elliptic Curve
signature in 1.2 seconds.

BasicCard ZC3.7 New 2K version, equivalent to BasicCard ZC3.1.

BasicCard ZC3.8 New 4K version, equivalent to BasicCard ZC3.2.

BasicCard ZC3.9 New 8K version, equivalent to BasicCard ZC3.3.

These three new versions were required due to hardware changes in the chip, but the functionality is
unchanged.

1.8 The Professional BasicCard
All Professional BasicCards contain a built-in public-key cryptography algorithm: ZC4.x series cards
support the RSA algorithm, and ZC5.x series cards support the EC-167 algorithm (Elliptic Curve
cryptography over the finite field GF(2167), as defined in IEEE standard P1363).

The minor version number (the x in ZC4.x and ZC5.x) indicates that the amount of user-programmable
EEPROM in the card is approximately 2X kilobytes.

1.9 The MultiApplication BasicCard

13

Currently available Professional BasicCards:

Version
User-programmable

EEPROM T=0 T=1 EAX OMAC AES DES RSA EC SHA

ZC4.5A 30K SHA-1

ZC4.5D 30K SHA-1

ZC5.4 16K EC-167 SHA-1

ZC5.5 31K EC-211 SHA-256

From time to time, new versions of the Professional BasicCard will appear, and new features will be
added to existing cards. See the Professional and MultiApplication BasicCard Datasheet on
ZeitControl’s BasicCard web site www.BasicCard.com for the most up-to-date information.

The version number of the card, along with its software revision number, is returned by the card as an
ASCII string in the response to the GET STATE command (see 8.7.3 The GET STATE Command).

1.9 The MultiApplication BasicCard
Version ZC6.5 is the only MultiApplication BasicCard currently available:

Version
User-programmable

EEPROM T=0 T=1 EAX OMAC AES DES EC-211 SHA-256

ZC6.5 31K

See Chapter 5: The MultiApplication BasicCard for more information.

www.BasicCard.com

14

2. The Terminal

2.1 The Terminal Program
The ZC-Basic language was designed with the BasicCard in mind. But it can also run in a PC, with or
without a card reader attached to the serial port. You can write a stand-alone ZC-Basic program to do
your monthly accounts, or to help you solve crosswords, or whatever you like.

A ZC-Basic program that runs on a PC is referred to in this documentation as the Terminal program.
Usually it will communicate with one or more ZC-Basic programs running in (real or simulated)
BasicCards – the BasicCard programs.

The compiler can create executable files, image files, and debug files from a Terminal program source
file – see 6.9.1 The ZC-Basic Compiler ZCMBASIC.EXE for details.

2.1.1 Executable Files
The compiler can create standard executable files (files with .EXE extension), that will run as
programs in a DOS box under Windows®. Such programs can communicate with a real or simulated
BasicCard. Such programs are not self-modifying, so they can’t execute Write Eeprom statements
(see 2.2.4 Permanent Data below).

Command-line parameters passed to the executable file can be accessed from ZC-Basic in the pre-
defined string array Param$ (1 To nParams) – see 3.21.10 Pre-Defined Variables.

2.1.2 Image Files
For more flexibility during program development, the compiler can also create a ZeitControl Image
File (with .IMG extension) from your Terminal program source file. The ZCMSIM P-Code interpreter
can then run this Terminal program together with a BasicCard program running in a real or simulated
BasicCard – see 6.9.2 The P-Code Interpreter ZCMSIM.EXE for details.

2.1.3 Debug Files
The compiler can also produce Debug Files (with .DBG extension), which are ZeitControl Image Files
with debugging information included. These files are used by the ZCMDTERM Terminal Program
debugger. Image files and debug files are described in Chapter 11: Output File Formats.

2.1.4 Terminal Program Files
The ZCMDTERM Terminal Program debugger saves the data for a given Terminal Program in a
Terminal Program file, with .ZCT extension. This file contains the source filename, the compiler
options, and various other data.

2.2 Terminal Program Layout
A Terminal program consists of the main procedure and procedure definitions. BasicCard commands
are declared in command declarations, after which they can be called just like functions.

The Terminal program is executed by ZeitControl’s P-Code interpreter, in one of three ways:

• as a stand-alone executable file (.EXE) created by the compiler;
• by the ZCMSIM P-Code interpreter, from an Image File (.IMG);
• by the ZCMDTERM Terminal Program debugger, from a Debug File (.DBG).

2.2 Terminal Program Layout

15

The P-Code interpreter can run BasicCard programs simultaneously in the PC in simulated BasicCards,
or it can communicate with genuine BasicCards via a card reader – a ZeitControl Chip-X® or
CyberMouse® card reader connected to a serial port or a USB port, or any other PC/SC-compatible
card reader.

2.2.1 The Main Procedure
The main procedure starts at the first statement that is not contained inside a procedure definition, and
ends at the start of the next procedure definition (or the end of the source file). The Terminal program
begins execution at the first statement in the main procedure, and continues until it reaches the end of
the main procedure, or until an Exit statement is executed.

2.2.2 Procedure Definitions
Procedure definitions in the Terminal program consist of functions and subroutines, exactly like a
regular Basic program. Each procedure is self-contained – nested procedure definitions are not allowed,
and GoTo and GoSub statements can only transfer control to labels within the current procedure.

2.2.3 Command Declarations
Before you can call a BasicCard command, you must declare it, so that the ZC-Basic compiler knows
the two ID bytes of the command, and the types of the command parameters. Apart from the two ID
bytes, a command declaration looks like a subroutine declaration. Here are declarations of the three
example commands from 1.5 BasicCard Program Layout:

Declare Command &H80 &H10 GetCustomerName (Name$)
Declare Command &H80 &H20 DebitAccount (Amount As Long)
Declare Command &H80 &H30 ChangeBalance (NewBalance As Long)

Calling these commands is just like calling a function:

Status = GetCustomerName (Name$)
If Status <> &H9000 And (Status And &HFF00) <> &H6100 Then

Print ″GetCustomerName: Status = &H″; Hex$ (Status)
GoTo Retry

End If

You should always check the return value, even if the command itself has no error conditions, in case a
communication problem has occurred (such as the card being removed from the reader). If you prefer,
you can use the pre-defined variables SW1, SW2, and SW1SW2, which contain the status bytes from
the most recently called command:

Call GetCustomerName (Name$)
If SW1SW2 <> &H9000 And SW1 <> &H61 Then

Print ″GetCustomerName: Status = &H″; Hex$ (SW1SW2)
GoTo Retry

End If

See 8.6 Status Bytes SW1 and SW2 for a list of ZC-Basic status codes. The file
BasicCardPro\Inc\Commands.Def defines these status codes in Const statements, so you can
refer to &H9000 and &H61 as swCommandOK and sw1LeWarning respectively if you include this
file in your program – see 3.3.1 Source File Inclusion. Alternatively, you can call the subroutine
CheckSW1SW2(), which is defined in the file COMMERR.DEF. If a communications error has
occurred, this subroutine prints a suitable error message and exits.

2.2.4 Permanent Data
ZC-Basic contains a very convenient mechanism for the reading and writing of permanent data in the
BasicCard: you just declare data of storage type Eeprom, and the BasicCard operating system does the
rest. Although the Terminal program contains no genuine EEPROM data, this useful feature is
available in Terminal programs as well, if they were loaded from a ZeitControl Image File (or Debug
File). Eeprom data in a Terminal program is written back to the image file in two circumstances:

2. The Terminal

1616

1. On program exit, if the appropriate options were specified:

• in the ZCMDTERM Terminal Program debugger, checking the Save Terminal EEPROM
entry in the Terminal Program Options dialog box;

• with the –W parameter on the ZCMSIM command line (see 6.9.2 The P-Code Interpreter
ZCMSIM.EXE).

2. When the Terminal program executes a Write Eeprom statement (see 3.21.7 Saving Eeprom
Data).

Note: The Write Eeprom statement is only valid if the Terminal program is running in the ZCMSIM
P-Code interpreter or the ZCMDTERM Terminal Program debugger. Programs containing Write
Eeprom statements can’t be compiled into executable files.

17

3. The ZC-Basic Language
The ZC-Basic programming language is a fully functional, modern Basic, with function and subroutine
calls, user-defined data types, file I/O, and pre-processor directives. In addition, it has some special
features for the smart card environment, including command definition and invocation, I/O encryption,
and file access control.

In this chapter, the following conventions are observed:

• ZC-Basic keywords are printed in bold text.
• Statement fields that must be supplied by the programmer are printed in italic text.
• Programming examples are printed in fixed-width bold text.
• Optional statement fields are enclosed in [square brackets].
• Alternatives are separated by a vertical bar and enclosed in braces, e.g. { ByVal | ByRef }.

File I/O in ZC-Basic is described in Chapter 4: Files and Directories.

3.1 The Source File
A ZC-Basic Application must consist of a single compilation unit – there is no linking stage. This lets
the compiler work out the storage requirements of the whole program, so that it can use the limited
RAM as efficiently as possible. You may, however, split your source into several files and #Include
them all in a master source file.

The source consists of lines, which may be logically extended with the line continuation character ‘_’
(underscore). Each line consists of statements, separated from each other with ‘:’ (colon). A comment
character ‘'’ (single quote) causes the rest of the line to be ignored (unless it occurs inside a string). The
Rem keyword may also be used to introduce a comment, but it is only allowed at the beginning of a
statement. For instance:

X = 0 ′ Comment introduced by comment character
Rem OK to use Rem on its own line...

Y = 0 : Z = 0 : Rem ...but here we need the colon

3.2 Tokens
At the lowest level, a source program consists of a sequence of tokens. There are four kinds of token:
constants, identifiers, reserved words, and special symbols. Except for string constants, tokens may not
contain spaces or tabs.

 A constant can be an integer, a floating-point number, or a string. Integer constants are decimal by
default; the prefixes &O (or just &) and &H denote octal and hexadecimal constants respectively.
Integer constants have the range –2147483648 to +2147483647.

If a constant contains a decimal point or an exponent (E or e), it is a floating-point constant. ZC-Basic
supports only single-precision floating-point numbers. Floating-point numbers are stored in IEEE
denormalised format, with an 8-bit exponent and a 23-bit mantissa. This gives a precision of 7 decimal
places, and a range of 1.401298E–45 to 3.402823E+38.

A string constant is any sequence of printable characters enclosed in double quotes ‘"’. To include non-
printable characters in a string constant, use Chr$(); the double quote itself is Chr$(34). For example:

X$ = Chr$(34) + ″STRING″ + Chr$(34) + Chr$(10) ′ 10 = new line

The special syntax Chr$(c1, c2, ..., cn), where ci are all constants between 0 and 255, is an abbreviation
for

Chr$(c1) + Chr$(c2) + ... + Chr$(cn)

This defines a constant string consisting of the characters c1 through cn.

3. The ZC-Basic Language

1818

Variables, procedures, etc. must be given names, or identifiers. In ZC-Basic, an identifier consists of
letters (A-Z, a-z) and digits (0-9), followed by an optional type character (@, %, &, !, $). It may be
any length. An identifier must start with a letter. The type character specifies the data type of a function
or variable, as follows:

Character: @ % & ! $

Data type: Byte Integer Long Single String

If a type character is not present, the default type is Integer (but you can change this default behaviour
with DefByte, DefLng etc – see 3.22.2 DefType Statement). Case is not significant in ZC-Basic, so
ABC, AbC, and abc are considered identical. An identifier must not clash with a reserved word, which
is a word with a pre-defined meaning.

Here is a list of the reserved words in ZC-Basic:

Abs Access And Append ApplicationID
As Asc At ATR Base
Binary ByRef Byte ByVal Call
CardInReader CardReader Case Certificate ChDir
ChDrive Chr$ Close Cls Command
Const CurDir CurDrive Declare DefByte
DefInt DefLng DefSng DefString DES
Dim Dir Disable Do Dynamic
Eeprom Else ElseIf Enable Encryption
End EOF Erase Exit Explicit
File For FreeFile Function Get
GetAttr GoSub GoTo Hex$ If
Implicit InKey$ Input Integer Is
Key Kill LBound LCase$ Left$
Len Let Line Lock Log
Long Loop LTrim$ Mid$ MkDir
Mod Name Next Not On
Open Option Or Output OverflowCheck
PcscCount PcscReader Polynomials Print Private
Public Put Random Randomize Read
ReDim Rem ResetCard Return Right$
RmDir Rnd Rol RolB Ror
RorB RTrim$ Seek Select SetAttr
Shared Shl Shr ShrL Single
Space$ Spc Sqrt Static Step
Str$ String String$ Sub Tab
Then Time$ To Trim$ Type
UBound UCase$ Unlock Until Val!
Val& ValH WEnd While Write
WTX Xor

In addition to constants, identifiers, and reserved words, the following special symbols are recognised:

(Left parenthesis) Right parenthesis _ Underscore (line continuation)

+ Plus - Minus ′ Single quote (comment character)

* Multiply / Divide # Pre-processor directive or file number

, Comma : Colon ″ Double quote (string delimiter)

= Equals <> Not equals . Full stop or Period

< Less than > Greater than ; Semi-colon

<= Less than or equal to >= Greater than or equal to

3.3 Pre-Processor Directives

19

3.3 Pre-Processor Directives
Pre-processor directives are instructions to the ZCMBASIC compiler. For instance, they tell the
compiler which lines of source code to compile, and whether these lines should be written to the list
file if a listing is requested. They can also be used to specify various command-line parameters in the
source code itself – in this case, the compiler accepts the first occurrence of the parameter, so directives
in the source code are overridden by parameters on the command line.

A pre-processor directive begins with the hash character ‘#’, which must be the first character on the
input line (excluding spaces and tabs).

3.3.1 Source File Inclusion
The directive

#Include filename

causes the named file to be included and compiled as if it was part of the source file itself. Included
files can themselves contain #Include directives, nested to any depth. If filename contains any space
characters, it must be enclosed in double quotes (“filename”); otherwise the quotes are optional. The
compiler looks for the file in the following directories:

• first, the directory of the including file;
• next, directories specified in –I parameters, in the order that they appear in the command line (see

6.9.1 The ZC-Basic Compiler ZCMBASIC.EXE);
• next, the current directory;
• next, directories specified in the Windows® Registry variable
 “HKEY_CURRENT_USER\Software\ZeitControl\BasicCardPro\ZCINC”;
• finally, directories specified in the ZCINC environment variable.

The ZCINC Windows® Registry variable can be set from the ZCPDE Professional Development
Environment, via menu item Options|Environment|Compiler.

3.3.2 Constant Definition
The statement

Const constantname=expression [,constantname=expression,...]

defines one or more constants. expression can be an integer, floating point, or string constant.

3.3.3 Library Inclusion
The directive

#Library filename

loads a ZeitControl Plug-In Library for the Enhanced BasicCard. See Chapter 7: System Libraries for
a list of currently available libraries. The compiler looks for the #Library file in the same directories as
it looks for #Include files – see 3.3.1 Source File Inclusion for details.

Notes:
• ZeitControl provides a definition file library.def for each library file library.lib. The definition file

contains the appropriate #Library directive, along with all the required declarations. You should
normally just #Include this definition file, rather than loading the library yourself with a #Library
directive.

• Terminal programs, and Professional and MultiApplication BasicCard programs don’t need the
#Library directive, as they use a different mechanism for loading Libraries – see 3.13.2 System
Library Procedures.

3. The ZC-Basic Language

2020

3.3.4 The #Pragma Directive
Various card-specific options can be selected using the #Pragma directive. At the time of writing, the
following options are available in some or all cards:

Protocol Specification

#Pragma ATR (ATR-Spec)

where ATR-Spec defines the ATR (Answer To Reset) that the card sends on reset. See 3.20.1
Customised ATR for the format of ATR-Spec.

In the MultiApplication BasicCard, protocol selection is implemented via the reserved file “ATR” –
see 5.3.1 ATR File for details.

For compatibility with earlier source code, the following options are still accepted by the compiler:

Old Version New Version
#Pragma InverseConvention #Pragma ATR (Inverse)
#Pragma [T=0,] [T=1] #Pragma ATR ([T=0,] [T=1])
#BWT n #Pragma ATR (BWT = n)
Declare ATR = string #Pragma ATR (HB = string)

SW1-SW2 = &H9XXX Allowed

#Pragma Allow9XXX

Normally, if SW1-SW2 <> &H9000, and SW1 <> &H61, then ODATA is not sent – see 8.5
Commands and Responses. You can override this behaviour in some BasicCards with this option: if
SW1-SW2 has the form &H9XXX, then ODATA is sent in the response. This behaviour is enabled for
every command. See 7.10.8 SW1-SW2 Processing for an alternative method.

At the time of writing, this option is available in Professional BasicCards ZC5.4 (from Revision B) and
ZC5.5 (all revisions), and in MultiApplication BasicCard ZC6.5.

Catch Undefined Commands

In the MultiApplication BasicCard, if a Default Application is defined, it can be configured to catch all
commands that the currently selected Application doesn’t recognise. Enable this option with

#Pragma CatchUndefinedCommands

in the source code of the Default Application. See 5.2.3 Catching Undefined Commands for more
information.

3.3.5 Conditional Compilation
Sections of code can be included or excluded according to the values of constants defined earlier (or on
the compiler command line):

#If condition1
 code block 1
[#ElseIf condition2
 code block 2]
[#ElseIf condition3
 code block 3]
. . .
[#Else
 code block n]
#EndIf

where condition1, condition2,... are constant numerical expressions, which may include symbols
defined in Const statements or on the compiler command line (with the “–Dsymbol” parameter – see
6.9.1 The ZC-Basic Compiler ZCMBASIC.EXE). Code block i is compiled if condition i is the first
non-zero condition.

3.3 Pre-Processor Directives

21

Instead of testing the value of a numerical expression, you can test whether a constant symbol has been
defined:

#IfDef symbol1
 code block 1
[#ElseIfDef symbol2
 code block 2]
[#ElseIfDef symbol3
 code block 3]
. . .
[#Else
 code block n]
#EndIf

The directives #IfNotDef and #ElseIfNotDef have the opposite sense to directives #IfDef and
#ElseIfDef respectively.

#EndIf has the alternative form #End If (with a space) for compatibility with the Basic End If
statement.

See also 3.3.13 Pre-Defined Constants.

3.3.6 Listing Directives
You can cause sections of code (or complete included files) to be omitted from the listing file with the
directive

#NoList

The #NoList directive is cancelled by #List.

3.3.7 Card State
By default, a single-application BasicCard is switched to state TEST after a ZC-Basic program is
downloaded. You can override this with the #State directive:

#State { LOAD | PERS | TEST | RUN }

This is equivalent to the command-line parameter –Sstate (see 6.9.1 The ZC-Basic Compiler
ZCMBASIC.EXE).

3.3.8 Number of Open File Slots
Each open file in a ZC-Basic program is assigned an open file slot. The maximum number of files that
can be opened simultaneously is equal to the number of open file slots:

Terminal Program MultiApplication BasicCard Professional BasicCard Enhanced BasicCard
32 10 4 2

In the Professional and Enhanced BasicCards, this number can be overridden with the #Files directive:

#Files nFiles

with 0 <= nFiles <= 16. This number includes files opened in the BasicCard program and BasicCard
files opened from a Terminal program. The amount of RAM used by the file system is (6 * nFiles + 7)
bytes (unless nFiles is zero, in which case no file system is installed, so no RAM is required).

3.3.9 Stack Size
The #Stack directive specifies the size of the P-Code stack:

#Stack stack-size

This is equivalent to the compiler command-line parameter –Sstack-size (see 6.9.1 The ZC-Basic
Compiler ZCMBASIC.EXE). If no stack size is specified, the compiler works out for itself how big
the stack should be.

3. The ZC-Basic Language

2222

3.3.10 Heap Size
In a MultiApplication BasicCard program, the #Heap directive specifies the size of the Application
heap:

#Heap heap-size

This is equivalent to the compiler command-line parameter –Hheap-size (see 6.9.1 The ZC-Basic
Compiler ZCMBASIC.EXE).

The Application heap contains the Application’s Eeprom strings and Eeprom dynamic arrays. If no
heap size is specified, the heap is made just big enough to contain the strings and arrays that are
initialised in the source code. If the source code contains uninitialised Eeprom strings or dynamic
arrays, but no #Heap directive is present, the compiler issues an appropriate warning.

3.3.11 Message Directive
You can output a message at any point during compilation with

#Message message

The message is printed to the screen, and compilation continues unaffected.

3.3.12 Error Directive
You can define your own compiler error messages with the #Error directive. For instance:

#If MaxLineLength > 80
#Error MaxLineLength too big (max 80)

#EndIf

Then if anybody tries to compile the program with MaxLineLength defined as 100, say, the compiler
will issue the error message “#Error MaxLineLength too big (max 80)” and stop compilation.

3.3.13 Pre-Defined Constants
According to the target machine type, one of the following constants is pre-defined by the compiler
(and has the value 1):

TerminalProgram CompactBasicCard EnhancedBasicCard
ProfessionalBasicCard MultiAppBasicCard

For instance:

#IfNotDef EnhancedBasicCard
#Error This program must be compiled for the Enhanced BasicCard!

#EndIf

In BasicCard programs, the constants CardMajorVersion and CardMinorVersion are also defined.
For instance, in a program compiled for the Enhanced BasicCard ZC3.5, they take the values 3 and 5
respectively.

3.4 Data Storage
All variables in a ZC-Basic program belong to one of four data storage classes: Eeprom, Public,
Static, or Private.

3.4.1 Eeprom data
EEPROM is the BasicCard’s equivalent of a hard disk. It retains its contents while the card is powered
down in the customer’s pocket. EEPROM contains your ZC-Basic program (compiled into P-Code),
directories and files (in the Enhanced BasicCard), and all permanent variables (such as the customer’s
name or the credit balance in the card). For example:

Eeprom CustomerName$ = ″″ ′ We don′t know customer′s name yet
Eeprom Balance& = 500 ′ Free 5-euro bonus for new members

3.5 Data Types

23

If you don’t specify an initial value, the data will be initialised to zero. This initialisation takes place
when the program (P-Code and data) is downloaded to the card.

Eeprom data has global scope – it can be accessed by all procedures in the program.

3.4.2 Public and Static data
 The RAM data area contains Public and Static data, that retains its value as long as the BasicCard
remains powered up in the card reader (or until another Application is selected in the MultiApplication
BasicCard). Public data has global scope; Static data has local scope – it can only be accessed by the
procedure that declared it.

Public and Static data can be initialised, just like Eeprom data. The initialisation takes place whenever
the card is powered up (or in the MultiApplication BasicCard, whenever the Application is selected).

3.4.3 Private data
Data declared in a procedure as Private exists only until the procedure returns. It is allocated on the
P-Code stack every time the procedure is called. It has local scope. Private data can be initialised with
constant values:

Private LoopCounter = 100

This initialisation takes place every time the procedure is called. Uninitialised Private data is set to
zero when the procedure is called.

You don’t have to declare every variable before you use it. If the compiler meets a variable name that it
doesn’t recognise, it implicitly declares it as Private and issues a warning message – unless you have
overridden this behaviour with the Option Explicit statement (see 3.22.4 Explicit Declaration of
Variables and Arrays), or by declaring the procedure itself Static (see 3.12 Procedure Definition).

3.5 Data Types
ZC-Basic supports the following data types:

Byte 1-byte unsigned integer. Range: 0 to 255.

Integer 2-byte signed integer. Range: –32768 to +32767.

Long 4-byte signed integer. Range: –2147483648 to +2147483647.

Single 4-byte single-precision floating-point number (denormalised IEEE format: 1 sign bit,
8-bit exponent, and 23-bit mantissa with implied msb=1 unless exponent is zero).
Precision: 7 decimal digits. Range: +/–1.401298E–45 to +/–3.402823E+38.

String Character string, up to 254 bytes long. Requires n+3 bytes of storage, where n is the
length of the string – a 2-byte pointer to an (n+1)-byte (length, data) pair.

String*n Fixed-length string, n bytes long, where n is a constant between 1 and 254. Requires n
bytes of storage.

You may also define your own data types – see 3.8 User-Defined Types.

Note: The Single data type is not supported in the Compact BasicCard. You may store Single data in
the Compact BasicCard, but you can’t perform floating-point arithmetic operations or string
conversions.

3.6 Arrays
An array in ZC-Basic can belong to any of the four data storage classes (Eeprom, Public, Private,
Static), and its elements may be of any type (Byte, Integer, Long, Single, String, String*n, or a user-
defined type). It may have up to 32 dimensions, and may contain up to 16K of data. In Compact and
Enhanced BasicCard programs, the upper and lower bounds for each dimension are subject to the
constraints:

3. The ZC-Basic Language

2424

–32 <= lower bound <= 31 and lower bound <= upper bound <= lower bound + 1023

All arrays are either Dynamic or Fixed. The upper and lower bounds of a Fixed array must be constant
expressions, and can’t be changed. The bounds of a Dynamic array can be any integer expression, and
the array can be re-sized at any time with a ReDim statement. However, the number of dimensions of a
Dynamic array can’t be changed.

If any of the subscripts in an array access is out of bounds, a run-time P-Code error is generated.

The ReDim statement has the following syntax:

ReDim array (bounds [, bounds, . . .]) [As type] [, array (bounds [, bounds, . . .]) [As type], . . .]

array If array has already been declared, it must be a Dynamic array, and one bounds
specifier must be present for each dimension. (In this case, As type is not required,
but if present it must match the type as originally declared.) If array has not yet been
declared, then the ReDim statement does double duty as a data declaration statement.
In other words, the statement

ReDim array (bounds [, bounds, . . .]) [As type]

is expanded to

Dim Dynamic array ([, , . . .]) [As type]
ReDim array (bounds [, bounds, . . .])

(The Dim statement is described in 3.7 Data Declaration.)

bounds The bounds specifier gives the upper and lower bounds for each dimension, in the
form [lower-bound To] upper-bound. If lower-bound is not given, it defaults to 0,
unless otherwise specified in an Option Base statement (see 3.22.3 Array Subscript
Base).

An array can be cleared with the Erase statement:

Erase array [, array, . . .]

If array is Fixed, all its elements are set to zero. If array is Dynamic, its data area is freed. In either
case, if the elements of array are of type String, they are all freed.

3.7 Data Declaration
Data items and arrays are declared and initialised in a data declaration statement. A data declaration
statement consists of a sequence of data declarations separated by commas. Data may optionally be
initialised with constant values:

storage-class [Dynamic] data-declaration [=initial-value] [, data-declaration [=initial-value], . . .]

storage-class This can be Eeprom, Public, Private, or Static. The keyword Dim is also allowed;
outside a procedure, Dim is a synonym for Public, and inside a procedure, it has the
same meaning as Private (or Static in a procedure declared as Static).

Dynamic If the Dynamic keyword is present, then all arrays declared in the statement are
Dynamic arrays.

data-declaration This field takes one of two forms:

1. For scalar (non-array) data, data-declaration has the form

name [As type] [At address]

The type of the variable name is determined as follows:
• by type if [As type] is present;
• otherwise, by the last character of name if it belongs to the following list:

Character: @ % & ! $

Data type: Byte Integer Long Single String

3.8 User-Defined Types

25

• otherwise, by the initial character of name, as specified in the most recent
DefType statement (see 3.22.2 DefType Statement).

By default, all initial characters are assigned to Integer type in ZC-Basic, as if by the
statement DefInt A–Z.

The address of the variable name is automatically assigned by the compiler, unless
overridden by [At address]. If present, address takes the form var[+constant], where
var is the name of a previously declared variable. The new variable must be entirely
contained within the previously-declared variable.

2. If an array is being declared, data-declaration has the form

array (bounds [, bounds, . . .]) [As type]

The type of the elements of the array is determined as described above for scalar
variables. The form of the bounds specifier is described in the previous section under
ReDim. There is an additional possibility – the empty array syntax:

array ([, . . .]) [As type]

This declares a Dynamic array, while deferring the allocation of the array to a later
time. The following example declares empty Dynamic arrays A1, A2, and A3 with
one, two, and three dimensions respectively:

Dim A1()
Dim A2(,)
Dim A3(,,)

Otherwise, array is Dynamic if (i) the Dynamic keyword was specified; or (ii) any
of its bounds is non-constant.

If no initialisation data is present, the data item or array is initialised to zero (or empty strings in the
case of String data). In ZC-Basic, any type of data may be initialised, with two exceptions: Dynamic
arrays with non-constant initial bounds, and Private Dynamic arrays. Initialisation data must be
constant. If an array is initialised, the data must be specified in the order of the array elements, with the
leftmost subscript varying the fastest (‘column-major’ order). For instance, the following example
initialises each element of a 2x2 String array to contain an ASCII description of itself:

Option Base 1 ′ Set lower bound of arrays to 1
Private X$(2,2) = ″X$(1,1)″, ″X$(2,1)″, ″X$(1,2)″, ″X$(2,2)″

If the end of the initialisation data is reached before the array has been filled, the rest of the array is
initialised to zero (or empty strings for a String array).

Fixed-length String*n data can be initialised in two ways: as a string, or as a list of bytes. These two
ways can be combined, but the string must be the last data item in the list. For example:

Eeprom S1 As String*5 = ″ABC″ ′ Padded with two NULL bytes
Public S2 As String*3 = &H81, &H82, &H83
Private S3 As String*7 = 3, 4, ″XYZ″
Rem This is equivalent to:
Rem Private S3 As String*7 = 3, 4, 88, 89, 90, 0, 0

3.8 User-Defined Types
ZC-Basic supports the user definition of structured data types:

Type type-name
member-name [As type] [, member-name [As type], . . .]
member-name [As type] [, member-name [As type], . . .]
. . .
End Type

type-name and member-name are regular identifiers. The type of each member can be Byte, Integer,
Long, Single, String*n, or another user-defined type. It may not be an array, or a String of variable
length. The total size of all the members must not exceed 254 bytes.

3. The ZC-Basic Language

2626

If var is a variable or array element of type type-name, then the members of var are referred to using
the syntax var.member-name (as in the ‘C’ programming language). For example:

Type Point: X!, Y!: End Type ′ Character ′!′ => type Single...
Type Rectangle

Area As Single ′ ...or the type can be declared explicitly
TopLeft As Point
BottomRight As Point

End Type

Sub Area (R As Rectangle)
Width! = R.BottomRight.X! – R.TopLeft.X!
Height! = R.BottomRight.Y! – R.TopLeft.Y!
R.Area = Width! * Height!

End Sub

A user-defined type can be copied as a unit, with a single assignment statement:

Public UnitSq As Rectangle = 0,0,0,1,1 ′ BottomRight = (1.0,1.0)
Call Area (UnitSq) ′ Fill in the Area
Public RA(10) As Rectangle
For I = 1 To 10 : RA(I) = UnitSq : Next I

Variables or array elements of the same user-defined type can be compared for equality using = and <>
(but the comparison operators < , > , <= , and >= are not allowed).

3.9 Expressions
An expression is built up by applying operations to terms. For example:

X + 5 ′ Apply ′+′ (addition) to terms X and 5
A(I) * Rnd ′ Apply ′*′ (multiplication) to terms A(I) and Rnd
S$ + ″0″ ′ Apply ′+′ (concatenation) to terms S$ and ″0″

A term can be one of the following:
• A constant: the type of a constant term is Byte, Integer, or Long (depending on the value of the

constant) for whole-number expressions, Single for floating-point expressions, and String for
string constants.

• A scalar variable, an array element, or a member of a variable or array element of user-defined
type.

• A function call. This can be a user-defined function or command, or a built-in function (such as
Abs, Sqrt, LBound, Chr$, or CurDir).

• An array name, with no parentheses (or an empty pair of parentheses). This returns the address of
the data area of the array, so that you can check whether a dynamic array has been allocated or not.
For instance:

Eeprom Dynamic A() ′ Declare an Integer array
...
If A = 0 Then Redim A (10) ′ or ′If A() = 0...′

An expression has one of the following types: Byte, Integer, Long, Single, String, boolean, or user-
defined. A boolean expression is an expression of type Integer that is the result of a comparison; it
takes the value True (–1) or False (0). Normally a boolean expression is treated the same as an Integer
expression; any exceptions are noted below.

3.9 Expressions

27

3.9.1 Numerical Expressions
If expr1 and expr2 are numerical expressions (i.e. expressions of type Byte, Integer, Long, Single, or
boolean), the following operations are allowed, grouped in descending order of priority:

– expr1 Unary minusGroup 1 + expr1 Unary plus (has no effect)

Group 2 Not expr1 Bitwise complement

expr1 * expr2 Multiplication
Group 3 expr1 / expr2 Division

expr1 Mod expr2 Remainder

expr1 + expr2 AdditionGroup 4 expr1 – expr2 Subtraction

expr1 Shl expr2 Shift Left
expr1 Shr expr2 Shift Right (arithmetical, with sign preserved)
expr1 ShrL expr2 Shift Right Logical (with sign bit cleared)

Group 5 expr1 Rol expr2 Rotate Left
expr1 Ror expr2 Rotate Right
expr1 RolB expr2 Rotate Byte Operand Left
expr1 RorB expr2 Rotate Byte Operand Right

expr1 < expr2 True if expr1 is less than expr2
expr1 <= expr2 True if expr1 is less than or equal to expr2Group 6 expr1 > expr2 True if expr1 is greater than expr2
expr1 >= expr2 True if expr1 is greater than or equal to expr2

expr1 = expr2 True if expr1 is equal to expr2Group 7 expr1 <> expr2 True if expr1 is not equal to expr2

Group 8 expr1 And expr2 Bitwise And

Group 9 expr1 Xor expr2 Bitwise exclusive-or

Group 10 expr1 Or expr2 Bitwise Or

The priority of an operator determines the order of the operations. For instance, 3 + –5 * 7 is evaluated
as 3 + ((–5) * 7) , and A Or B And C is evaluated as A Or (B And C).

Numerical Operators

Groups 1, 3, and 4 are the numerical operators. The type of the resulting expression is determined as
follows:
• If expr1 or expr2 is Single, then the other is converted to Single if necessary; the resulting

expression if of type Single.
• Otherwise, if expr1 or expr2 is Long, then the other is converted to Long if necessary; the

resulting expression if of type Long.
• Otherwise, expr1 and expr2 are converted to Integer; the resulting expression is of type Integer.

Note: Even if expr1 and expr2 are both Byte expressions, they are converted to Integer before any
operation is performed. (This means that the only expressions of type Byte are those consisting of a
single term.)

Shift/Rotate Operators

The shift/rotate operators in Group 5 are currently available in Terminal programs, Professional
BasicCard ZC5.5, and MultiApplication BasicCard ZC6.5. expr2 is treated as an unsigned Integer (so,
for instance, expr1 Shl expr2 will always be zero if epxr2 < 0 or expr2 > 31). These operators never
generate an overflow error.

Comparison Operators

Groups 6 and 7 are the comparison operators. Exactly the same conversions are applied as for the
numerical operators, but the type of the resulting expression is boolean.

3. The ZC-Basic Language

2828

Bitwise Operators

Groups 2, 8, 9, and 10 are the bitwise operators. Bitwise operations are never performed on Single
expressions; if expr1 or expr2 is Single, it is converted to Long before a bitwise operation is
performed. If both expr1 and expr2 are of boolean type, then the result is also of boolean type.

There is a special rule concerning the evaluation of expressions of boolean type:

If expr1 and expr2 are both of boolean type, and one of the expressions
expr1 And expr2 expr1 Or expr2

occurs in the program, then expr2 is not evaluated if the value of the whole
expression can be deduced from the value of expr1 alone.

In other words:

• if expr1 is False, then “expr1 And expr2” is always False as well, so expr2 is not evaluated;
• if expr1 is True, then “expr1 Or expr2” is always True as well, so expr2 is not evaluated.

This is important if the evaluation of expr2 has any side-effects. For instance:

If X! = 0 Or F(1/X!) > 100 Then Goto 100

If X! is zero, then 1 / X! is not evaluated (which would otherwise cause a run-time error), and the
function F is not called (which might, for instance, have changed Public data).

3.9.2 String Expressions
If either expr1 or expr2 is of type String, then the other must be of type String as well: there are no
mixed numerical/string operations. The following string operations are allowed:

Group 1 expr1 + expr2 String concatenation

expr1 < expr2 True if expr1 is less than expr2
expr1 <= expr2 True if expr1 is less than or equal to expr2Group 2
expr1 > expr2 True if expr1 is greater than expr2
expr1 >= expr2 True if expr1 is greater than or equal to expr2

expr1 = expr2 True if expr1 is equal to expr2Group 3 expr1 <> expr2 True if expr1 is not equal to expr2

The resulting expression is of String type after string concatenation (Group 1), and of boolean type
after string comparison (Groups 2 and 3). The comparison operations in Group 2 are performed by
finding the first characters that differ in the two strings, and comparing their ASCII values. In ASCII,
all lower-case letters are greater than all upper-case letters, so for instance “abc” is greater than “XYZ”.
For case-insensitive comparison, use UCase$ or LCase$ to convert both arguments to the same case.
For example:

If UCase$(S1$) > UCase$(S2$) Then T$ = S1$: S1$ = S2$: S2$ = T$

3.9.3 Expressions of User-Defined Type
The only operation allowed on user-defined types is comparison for equality:

expr1 = expr2 True if expr1 is equal to expr2Group 1 expr1 <> expr2 True if expr1 is not equal to expr2

The resulting expression is of boolean type.

3.10 Assignment Statements

29

3.10 Assignment Statements
An assignment statement has the form

[Let] var = expression

where var is a scalar variable, or an array element, or a member of a variable or array element of user-
defined type. The Let keyword is optional. The following rules apply:
• If var has numerical type (Byte, Integer, Long, or Single), then expression must have numerical

type.
• If var has type String or String*n, then expression must have type String.
• If var has a user-defined type, then expression must have the same user-defined type.

There are four special string assignment statements:

[Let] Mid$ (string, start [, length]) = expression
[Let] Left$ (string, length) = expression
[Let] Right$ (string, length) = expression
[Let] string (n) = expression

Mid$ overwrites length characters of string with the value expression, starting from position start. (The
first character in the string has position 1.) A value of start less than 1 results in a run-time error; a
value of start greater than the length of string is not an error, but no characters are copied. If length is
absent, or if start+length is greater than the length of string, the whole of rest of the string is
overwritten.

Left$ overwrites the first length characters of string with the value expression. If length is greater than
the length of string, the whole of string is overwritten.

Right$ overwrites the last length characters of string with the value expression. If length is greater than
the length of string, the whole of string is overwritten.

In ZC-Basic, string (n) is shorthand for Mid$ (string, n, 1). So the last statement in the above list
assigns the first character of expression to the nth character of string.

In the first three string assignment statements, only the first length characters of expression are copied
into string. If length is greater than the length of expression, then the destination sub-string is filled out
with NULL characters (i.e. ASCII zeroes).

3.11 Program Control

3.11.1 Exit Statements
An Exit statement jumps out of an enclosing block of code, according to the type of the statement:

Exit For Jumps to the statement following the innermost current For-loop.
Exit While Jumps to the statement following the innermost current While-loop.
Exit Do Jumps to the statement following the innermost current Do-loop.
Exit Case Jumps to the statement following the next End Select.
Exit Sub Returns from a subroutine to the calling procdedure.
Exit Function Returns from a function to the calling procdedure.
Exit Command Returns from a BasicCard command to the caller in the Terminal program.
Exit Exits the program. Exit in a Terminal program returns to the operating system; Exit

in a BasicCard program returns to the caller in the Terminal program.
Note: The Exit statement (with no parameters) exits the program immediately,
without freeing Private strings and arrays. This is not a problem in the Terminal
program, but it can cause pcOutOfMemory errors in subsequent commands in a
BasicCard program, until the card is reset. So you should only use such an Exit
statement in a BasicCard program if you detect an error condition that prevents the
card from continuing the command-response session.

3. The ZC-Basic Language

3030

3.11.2 Labels
There are two types of label in ZC-Basic: named labels, and line numbers. A named label is an
identifier followed by a colon. A line number is simply a decimal number, which may or may not be
followed by a colon. A label, of either type, may only be accessed from within the procedure that
defines it. Label names and line numbers must be unique within each procedure, but the same name or
line number can be used in two different procedures.

3.11.3 GoTo
The simplest program control statement is the GoTo statement:

GoTo label
. . .
label:

The program continues execution at the statement following label.

Note: You can’t use GoTo to jump from one procedure to another.

3.11.4 GoSub
A procedure can call its own private subroutines with the GoSub statement. Such a private subroutine
is not a procedure; it has no parameters, and no data of its own. It is simply a part of the procedure that
defines it. It returns with the Return statement:

GoSub label
. . .
label:
 subroutine-code
Return [return-label]

If return-label is specified in the Return statement, the subroutine returns there; otherwise it returns to
the statement following the GoSub call.

3.11.5 If-Then-Else
The If statement executes code depending on the value of a conditional expression:

If condition Then
 code block
End If

The full form of the If-Then-Else block is as follows:

If condition1 Then
 code block 1
[ElseIf condition2 Then
 code block 2]
[ElseIf condition3 Then
 code block 3]
. . .
[Else
 code block n]
End If

Each condition is a numerical expression. code block i is executed if condition i is non-zero (true). If all
the conditions are zero (false), then code block n is executed.

If there are any statements on the same line after the Then of the initial If-statement, then this is a
single-line If-statement. In this case, the If-Then-Else block is terminated not with End If, but with the
end of the line. (This is the only place in the ZC-Basic language where a colon is not equivalent to an
end of line.) For instance:

3.11 Program Control

31

If X = 0 Then GoTo 100
If X < 0 Then X = 0 : ElseIf X > 50 Then X = 50

This is equivalent to

If X = 0 Then
GoTo 100

End If

If X < 0 Then
X = 0

ElseIf X > 50 Then
X = 50

End If

3.11.6 For-Loop
The For-loop executes a block of code a specified number of times:

For loop-var = start To end [Step increment]
[code block]
[Exit For]
[code block]

Next [loop-var]

loop-var A numerical variable, used to count the number of times the For-loop has been
executed.

start A numerical expression, the initial value of loop-var.
end A numerical expression. The For-loop terminates when loop-var passes this value.

More precisely:
If increment >= 0, then the For-loop terminates when loop-var > end.
If increment < 0, then the For-loop terminates when loop-var < end.

increment The amount by which loop-var is incremented after each execution of the For-loop.
If [Step increment] is absent, increment takes the value 1.

The Exit For statement breaks out of the For-loop to the statement following the Next instruction.

loop-var is optional in the Next statement (but it can be useful as a reminder if the loop is large).

If For-loops are nested, the Next statement can specify more than one loop variable. For example:

For I = 1 To 10: For J = 1 To 10: A(I,J) = 0 : Next I, J

Any Exit For statement, even in the innermost loop, breaks out to the statement following the Next
statement. So the following example prints only the value 11:

For I = 1 To 2 : For J = 1 To 2
Print 10*I + J : Exit For

Next I, J

However, this example prints 11 and 21:

For I = 1 To 2 : For J = 1 To 2
Print 10*I + J : Exit For

Next J : Next I

Note: This distinction was not observed by the compiler prior to Version 4.62; the first example
behaved just like the second. If your program relies on this behaviour, change any such Next I, J
statements to the form Next J: Next I.

3. The ZC-Basic Language

3232

3.11.7 While-Loop and Do-Loop
The While-loop is executed as long as condition is non-zero:

While condition
[code block]
[Exit While]
[code block]

Wend

The Do-loop has more flexibility:

Do [{While | Until} condition]
[code block]
[Exit Do]
[code block]

Loop [{While | Until} condition]

The optional [{While | Until} condition] may appear at the beginning or the end of the Do-loop, but
not both. If it appears at the end, then the loop is always executed at least once. If neither is present,
then the loop is executed endlessly until left by some other means (such as Exit Do or GoTo).

3.11.8 Select Case
Select Case executes one of several blocks of code, depending on the value of a test expression:

Select Case test-expression
Case case-test [, case-test, . . .]

[code block]
[Exit Case]
[code block]

Case case-test [, case-test, . . .]
[code block]
[Exit Case]
[code block]

. . .
[Case Else

[code block]
[Exit Case]
[code block]]

End Select

test-expression An expression of any type (numerical, String, or user-defined)

case-test This takes one of three forms:

expression True if test-expression = expression
expr1 To expr2 True if expr1 <= test-expression <= expr2
[Is] op expr True if test-expression op expr, where op is one of the six

comparison operators: < <= > >= = <>
The Is keyword is optional.

If test-expression is of user-defined type, only the first of these three forms is valid.

The Select Case statement executes the code following the first Case statement that contains a case-
test that is True. If more than one such Case statement exists, only the first is executed. If no such
Case statement exists, then the code following the Case Else statement is executed (and if there is no
Case Else statement, none of the code in the Select Case block is executed). The Exit Case statement
jumps to the statement following End Select.

3.12 Procedure Definition

33

3.11.9 Computed GoTo and Computed GoSub
You can jump to one of a list of labels depending on the value of a test expression:

On expression { GoTo | GoSub } label1 [, label2, . . . , labeln]

expression An expression of type Integer. If it is equal to r, with 1 <= r <= n, then GoTo labelr
or GoSub labelr is executed. If expression < 1 or expression > n, execution proceeds
with the following statement.

3.12 Procedure Definition
A ZC-Basic program consists mainly of procedure definitions. Each procedure is either a Subroutine,
a Function, or a Command. The Private and Static variables declared in a procedure belong to that
procedure alone, and can’t be accessed from other procedures (such variables are said to have local
scope); Public and Eeprom variables can be accessed from all procedures (they have global scope).

3.12.1 Subroutine
The simplest procedure type is the subroutine. A subroutine returns no value to the caller, except
through its arguments. A subroutine definition is as follows:

[Static] Sub proc-name ([param-def, param-def, . . .])
[procedure code]
[Exit Sub]
[procdedure code]

End Sub

Static If the Static keyword is present in the definition, undeclared variables in the
procedure have Static storage class, instead of Private.

param-def [{ByVal | ByRef}] param-name[()] [As type], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.15 Procedure
Parameters for a full discussion of parameters.

3.12.2 Function
A Function is a Subroutine that returns a value to the caller. A function definition is as follows:

[Static] Function proc-name ([param-def, param-def, . . .]) [As type]
[procedure code]
[proc-name = expression]
[Exit Function]
[procedure code]

End Function

Static If the Static keyword is present in the definition, undeclared variables in the
procedure have Static storage class, instead of Private.

param-def [{ByVal | ByRef}] param-name[()] [As type], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.15 Procedure
Parameters for a full discussion of parameters.

The return type of the function is determined as if proc-name were a variable name: from “As type” if
present; otherwise from the last character in proc-name if it is a type character (@, %, &, !, or $);
otherwise from the first character in proc-name. (The type characters are defined in 3.2 Tokens.) A
function can have any return type that is not an array.

Inside the function, proc-name behaves like a Private variable. It is initialised to zero when the
function is called, and its value is returned to the caller when the function exits.

3.12.3 Command
A command is defined like a subroutine, but you must specify the two ID bytes (CLA and INS) by
which the command will be invoked:

3. The ZC-Basic Language

3434

[Static] Command [CLA] [INS] proc-name ([PreSpec,] [param-def, param-def, . . .] [, PostSpec])
[procedure code]
[Exit Command]
[procdedure code]

End Command

Static If the Static keyword is present in the definition, undeclared variables in the
procedure have Static storage class, instead of Private.

CLA The ‘Class’ byte. All the pre-defined commands in the BasicCard have
CLA=&HC0, so you should normally avoid this value for your own commands,
unless you specifically want to override a pre-defined command. If CLA is not
present, CLA must be present in PreSpec.

INS The ‘Instruction’ byte. The compiler accepts any value; but in a card that uses the
T=0 protocol, this byte must be even, and the top nibble may not be 6 or 9. If INS is
not present, INS must be present in PreSpec.

PreSpec Pre-parameter specification. It may contain the following terms, in the following
order, and separated by commas:

CLA=constant An alternative way of specifying CLA
INS=constant An alternative way of specifying INS
Lc=0 Only relevant under the T=0 protocol

In a Professional BasicCard using the T=0 protocol, Lc=0 defines the command as
having no incoming data – a Case 2 command in the terminology of 8.3.2 APDU
Transmission by T=0. You only need to use this if:
• you are implementing a pre-existing T=0 command specification; or
• you want to minimise T=0 communications overhead to improve performance.

param-def [{ByVal | ByRef}] param-name[()] [As type], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.15 Procedure
Parameters for a full discussion of parameters.

PostSpec Post-parameter specification, only relevant under the T=0 protocol. You only need to
use this if:
• you are implementing a pre-existing T=0 command specification; or
• you want to minimise T=0 communications overhead to improve performance.

It may take one of two forms:
Disable Le
Input Le

Disable Le defines the command as having no outgoing data – a Case 3 command in
the terminology of 8.3.2 APDU Transmission by T=0.

Input Le is used to distinguish the two sub-cases of Case 4 commands – Case 4S.2
and Case 4S.3 in 8.3.6 Case 4: Incoming and Outgoing Data. In Case 4S.2
commands, ResponseLength is specified by the Terminal program in the Le
parameter, so the Terminal program must send Le before the command is executed;
in Case 4S.3 commands, the BasicCard decides for itself what ResponseLength
should be. Input Le defines the command as a Case 4S.2 command.

Notes:

1. The special syntax “[Static] Command Else proc-name ([param-def, param-def, . . .])” defines a
default command in the card, that is called when the BasicCard receives a command with
unrecognised CLA and INS.

2. In some cards (currently ZC5.5 from REV E, and ZC6.5 all revisions), if the Application contains
a subroutine ClaInsFilter(), this subroutine is called whenever a command is received, before the
BasicCard operating system looks for a match for CLA and INS. If you modify CLA or INS in
this subroutine, the card will behave as if the modified values had been received.

3. A Command parameter may not be an array.

3.13 Procedure Declaration

35

4. A Command definition is only valid in a BasicCard program; it is not allowed in a Terminal
program.

5. If a Command parameter is a variable-length string, it must be the last (or only) parameter in the
list. In the Compact BasicCard, the compiler must know how long this string can be, so that it can
make sure the P-Code stack is large enough; you can specify a maximum length for the string with
the special syntax:

param-name <= maxlen

For example:

Command &H20 &H00 SetUserName(UserID, Name$<=25)

In the absence of this special syntax, maxlen defaults to 40. (Other BasicCards use a more flexible
mechanism, and the length of the string is limited only by the requirement that the total parameter
list be no larger than 255 bytes. So this special syntax is not required.)

3.13 Procedure Declaration
The compiler can’t process a procedure call unless it knows what kinds of parameters the procedure
accepts. It knows this if the procedure has already been defined:

Function Square (X!) As Single
Square = X! * X!

End Function

Sub S()
Y! = Square (5.5) ′ OK – Square already defined

End Sub

But the compiler won’t accept the following:

Sub S()
Y! = Square (5.5) ′ Error - Square not defined yet

End Sub

Function Square (X!) As Single
Square = X! * X!

End Function

To call a procedure before it is defined, you must provide a procedure declaration that tells the
compiler what it needs to know. A procedure declaration starts with the word Declare:

Declare Sub proc-name ([param-def, param-def, . . .])
Declare Function proc-name ([param-def, param-def, . . .]) [As type]
Declare Command [CLA] [INS] proc-name ([PreSpec,] [param-def, param-def, . . .] [, PostSpec])

If a declaration and a definition of the same procedure occur in the program, then they must match.
More precisely:

• for a Function, the return type in the declaration must match the return type in the definition;
• for a Command, CLA and INS must be the same in the declaration and the definition;
• the types of the parameters must match exactly;
• the parameter-passing method (ByVal or ByRef) must be the same for each parameter.

However, the names of the parameters don’t need to match. Parameter names in a procedure
declaration are just place-holders; the only restriction is that they may not be reserved words (see 3.2
Tokens for a list of reserved words). For example:

3. The ZC-Basic Language

3636

Declare Function Square (Z!) As Single

Sub S()
Y! = Square (5.5) ′ OK - Square declared

End Sub

Function Square (X!) As Single ′ OK – matches declaration
Square = X! * X!

End Function

3.13.1 Command Declarations
A Command declaration has the following general form:

Declare Command [CLA] [INS] proc-name ([PreSpec,] [param-def, param-def, . . .] [, PostSpec])

The param-def fields are the same as in Function and Sub declarations. The PreSpec and PostSpec
fields are available for users who need precise control over the T=0 and T=1 Command APDU
parameters; otherwise they are not required.

CLA The ‘Class’ byte. All pre-defined commands in the BasicCard have CLA=&HC0, so
you should normally avoid this value for your own commands, unless you want to
override a pre-defined command. If CLA is not present, CLA must be present in
PreSpec, either here or in the procedure call – see 3.14.3 Calling a Command.

INS The ‘Instruction’ byte. The compiler accepts any value; but in a card that uses the
T=0 protocol, this byte must be even, and the top nibble may not be 6 or 9. If INS is
not present, INS must be present in PreSpec, either here or in the procedure call – see
3.14.3 Calling a Command.

PreSpec Pre-parameter specification. This field may contain any of the following terms, in the
following order, and separated by commas:

CLA=constant
INS=constant
P1=constant
P2=constant
P1P2=constant
Lc=constant

Each constant is a Byte expression, except P1P2, which is an Integer. See 8.5
Commands and Responses for definitions of these terms.

PostSpec Post-parameter specification. If present, this field takes one of the following forms:
Le=constant
Disable Le

Here, constant is a Byte expression; Disable Le specifies that Le is absent from the
command. See 8.5 Commands and Responses for a definition of Le.

3.13.2 System Library Procedures
In Terminal programs, and Professional and MultiApplication BasicCard programs, Library procedures
are called via the SYSTEM instruction. They are declared as follows:

Declare Sub SysCode SysSubcode proc-name ([param-def, param-def, . . .])
Declare Function SysCode SysSubcode proc-name ([param-def, param-def, . . .]) [As type]

SysCode The System Library identifier, a Byte between &HC0 and &HFF.
SysSubcode The procedure sub-code, any Byte value.

3.14 Procedure Calls

37

3.14 Procedure Calls

3.14.1 Calling a Subroutine
The recommended way to call a subroutine is

Call procedure-name ([[{ByVal | ByRef}] expression, [{ByVal | ByRef}] expression, . . .])

The expressions in the list must match the parameters in the subroutine declaration (or definition) in
number and type. (See 3.15 Procedure Parameters below for a fuller explanation.) If the subroutine
takes no parameters, then the parentheses are optional:

Call procedure-name [()]

Alternatively, ZC-Basic accepts the older subroutine call syntax (with parentheses not allowed):

procedure-name [[{ByVal | ByRef}] expression, [{ByVal | ByRef}] expression, . . .]

3.14.2 Calling a Function
A Function call returns a value, that can be used as a term in an expression. For example:

X! = X! + Square (X!+1)

A Function can also be called just as if it were a Subroutine, in which case the return value is simply
discarded.

3.14.3 Calling a Command
A Command is called as if it were a Function – although it is defined as if it were a Subroutine. The
reason for this is that the Terminal program automatically returns the command status word (SW1–
SW2) as if it were the return value of a function. This command status word should always be checked,
as it is possible that communications were disrupted for some reason before the command could be
successfully completed in the BasicCard.

A Command call has the following general form:

var = command-name ([PreSpec,] arg-list [, PostSpec])

where the arg-list field is the same as in Function and Sub calls. The PreSpec and PostSpec fields are
available for users who need precise control over the T=0 and T=1 Command APDU parameters;
otherwise they are not required.

PreSpec Pre-parameter specification. This field may contain any of the following terms, in the
following order, and separated by commas:

CLA=expr
INS=expr
P1=expr
P2=expr
P1P2=expr
Lc=expr

Each expr is a Byte expression, except P1P2, which is an Integer. See 8.5
Commands and Responses for definitions of these terms.

PostSpec Post-parameter specification. If present, this field takes one of the following forms:
Le=expr
Disable Le

Here, expr is a Byte expression; Disable Le specifies that Le is absent from the
command. See 8.5 Commands and Responses for a definition of Le.

An alternative method of calling a command:

Call command-name ([PreSpec,] arg-list [, PostSpec])

In this case, the command status word is available in the pre-defined variables SW1, SW2, and
SW1SW2.

3. The ZC-Basic Language

3838

3.15 Procedure Parameters

3.15.1 Parameter Passing
In traditional Basic, procedure parameters are passed by value or by reference. Passing by value means
that the procedure receives its own copy of the parameter; any changes it makes to this copy are lost
when the procedure returns. Passing by reference means that the address (or ‘reference’) of the
parameter is passed to the procedure; knowing its address, the called procedure can change the value of
a variable in the calling procedure.

In general, ZC-Basic can’t do this, because the BasicCard can’t change the value of a variable in the
Terminal program directly. However, it uses a write-back mechanism to achieve the same effect (and it
retains the keywords ByVal and ByRef, although they are not strictly accurate). With the exception of
String and array parameters, all parameters are passed by value (in the traditional sense); the value of
each parameter is pushed onto the P-Code stack before the procedure is called. The parameters are then
referenced like Private variables in the called procedure, and can be read or written directly. Then
when the procedure returns to the caller, any parameters that were passed ByRef are copied back from
the stack into their original locations.

By default, all parameters are passed ByRef (in the ZC-Basic sense). If the ByVal keyword is specified
in the procedure definition or declaration, then the following parameter is passed by value, and not
written back when the procedure returns. (The ByRef keyword is also allowed here, although it is
superfluous.) The parameter-passing method specified in the procedure definition or declaration can be
overridden for a particular procedure call by specifying ByVal or ByRef in front of a parameter. (Here
ByRef is not superfluous if the parameter was specified as ByVal in the procedure definition or
declaration.)

For the write-back mechanism to be invoked for a given parameter, the parameter-passing method must
be ByRef, and the expression in the procedure call must be an assignable expression – an expression
that can appear on the left-hand side of an assignment statement. If you don’t want a variable to be
changed by a called procedure, you can specify ByVal, or you can enclose the variable in parentheses
(which is a valid expression, but not an assignable expression). An example may make this clearer:

Declare Sub S (X, ByVal Y, ByRef Z) ′ ′ByRef′ redundant here
Private A, B, C
Call S (A, B, C) ′ A and C can change
Call S (ByVal A, ByRef B, C) ′ B and C can change
Call S (A+1, B, (C)) ′ Nothing can change – ′A+1′ and ′(C)′

′ are not assignable expressions

For information on the maximum total size of a parameter list, see 3.23.1 Parameter Size Limits.

3.15.2 String Parameters
There is an important difference between parameters of type String and parameters of type String*n.
The former occupy 3 bytes on the P-Code stack, the latter occupy n bytes. So you should where
possible use String parameters rather than String*n parameters. However, a variable-length string
parameter to a Command is only allowed if it is the last (or only) parameter; any other string
parameters must be of fixed-length String*n type.

Note: You can pass a fixed-length string in a String parameter, or a variable-length string in a
String*n parameter; the compiler performs the necessary conversions. The parameter type only
determines how the string is passed to the procedure.

For more information on String parameters, see 3.23.3 String Parameter Format.

3.15.3 Array Parameters
An array parameter takes up just two bytes on the P-Code stack (the address of the array descriptor is
passed to the procedure – see 3.23.2 Array Descriptor Format).

An array parameter is specified in a procedure definition or declaration by a pair of parentheses after
the parameter name:

param-name() [As type]

3.16 Built-in Functions

39

The parentheses must be empty. To pass an array parameter in a procedure call, the array name is
sufficient; an empty pair of parentheses after the array name is optional. The type of the array must
match exactly the type of the parameter. For example:

Declare Sub S (A() As Integer) ′ Parentheses required here
Dim X (10) As Integer, Y (20) As Long
Call S (X) ′ OK
Call S (X()) ′ Also OK – parentheses optional in call
Call S (Y) ′ Error – Y is Long array, not Integer array

The number of dimensions of the array is checked at run-time. The following code will compile, but
will generate a run-time error:

Declare Sub S (A() As Integer)
Dim X (5, 5, 5)
Call S (X)
...
Sub S (A() As Integer)
A (2, 2) = 0 ′ Run-time error – parameter X has 3 dimensions

3.15.4 Parameters of User-Defined Type
A parameter of user-defined type is passed to a procedure by pushing every member onto the P-Code
stack. The P-Code stack occupies precious RAM, so you should avoid passing large user-defined types
as procedure parameters. Otherwise, a parameter of user-defined type behaves just like a parameter of
numerical type.

3.16 Built-in Functions

3.16.1 Numerical Functions
Abs(X) Returns the absolute value of X (that is to say, X or –X, whichever is positive).

The type of the result is the type of X, unless X is Byte, in which case Abs(X) has
type Integer.

Rnd Returns a random number of type Long: –2147483648 <= Rnd <= 2147483647.
See 3.18 Random Number Generation.

Sqrt(X) Returns the square root of X. The result is of type Single.

3.16.2 Array Functions
LBound(array [, dim])
UBound(array [, dim])

These two functions return the lower and upper bounds of subscript dim in
the given array. If dim is not present, the lower or upper bound for the first
subscript is returned. The result is of type Integer.

3.16.3 String Functions
string (n) Returns a string of length 1, containing the nth character of string. (The first

byte of the string has position 1.) It is shorthand for Mid$(string, n, 1).

Asc(string) Returns the ASCII value of the first character of string, as a Byte.

Chr$(char-code) Returns a string of length 1, containing the ASCII character with the given
char-code. The special syntax Chr$(c1, c2, ..., cn), where ci are all constants
between 0 and 255, is short for Chr$(c1) + Chr$(c2) + ... + Chr$(cn).

Hex$(val) Returns a string containing the hexadecimal representation of the Long
number val.

Left$(string, len) Returns the first len bytes of string.

LCase$(string) Returns string with all upper-case letters converted to lower-case.

Len(string) Returns the length of string, as a Byte.

3. The ZC-Basic Language

4040

LTrim$(string) Returns string with leading spaces and NULL bytes removed.

Mid$(string, start[, len]) Returns len bytes of string, starting from position start. (The first byte of the
string has position 1.) If start > Len(string), the empty string is returned. If
start + len > Len(string) , or if len is absent, then the whole of string from
position start is returned. If start <= 0 or len < 0, a run-time error is
generated.

Right$(string, len) Returns the last len bytes of string.

RTrim$(string) Returns string with trailing spaces and NULL bytes removed.

Space$(len) Returns a string containing len space characters (ASCII 32).

Str$(val) Returns a string containing the decimal representation of val. If val is of
type Single, its value is given to 7 significant figures. Note: If val is of type
Single, use of this statement in an Enhanced BasicCard program will reduce
the amount of user-programmable EEPROM available – see 3.23.5 Single-
to-String Conversion for details.

String$(len, char) Returns a string consisting of len characters with ASCII value char. If char
is itself a string, then the returned string consists of len copies of the first
character of char.

Trim$(string) Returns string with leading and trailing spaces and NULL bytes removed.

UCase$(string) Returns string with all lower-case letters converted to upper-case.

Val&(string[, len]) Returns the decimal number represented by string, as a Long value. If len is
present, it must be a variable (not an array element). This variable is set to
the number of characters used.

Val!(string[, len]) Returns the decimal number represented by string, as a Single value. If len
is present, it must be a variable (not an array element). This variable is set to
the number of characters used. Note: Use of this statement in an Enhanced
BasicCard program will reduce the amount of user-programmable EEPROM
available – see 3.23.5 Single-to-String Conversion for details.

ValH(string[, len]) Returns the hexadecimal number represented by string, as a Long value. If
len is present, it must be a variable (not an array element). This variable is
set to the number of characters used.

3.16.4 Encryption Functions
Note: These functions are not available in the Compact BasicCard.

Key(keynum) Returns key number keynum as a string. If no such key exists, a zero-length
string is returned. This function may also appear on the left of an assignment
statement:

Key(keynum) = string

In the MultiApplication BasicCard, this function is not available; keys can
only be accessed via COMPONENT System Library procedures.

In the Terminal program, Key is a pre-defined, Static array of strings:
Key(0 To 255) As String. In the Enhanced and Professional BasicCards,
only keys declared in Declare Key statements can be accessed, and the
length of each key is fixed; see 3.17.3 Key Declaration for details.

DES(type, key, block$) Performs a single DES block encryption or decryption operation, returning
the result as an 8-byte string. key is either a key number from 0 to 255, or a
string containing a cryptographic key. block$ is a string at least 8 bytes long.
See 3.17.7 DES Encryption Primitives for more information. Professional
BasicCard ZC4.5A does not support this function.

Certificate(key, data) Returns a DES-based cryptographic certificate of data, as an 8-byte string.
key is either a key number from 0 to 255, or a string containing a

3.17 Encryption

41

cryptographic key. See 3.17.8 Certificate Generation for more
information.

3.16.5 Other Functions
Len(variable) Returns the size, in bytes, of a scalar variable (arrays are not allowed).

Len(type) Returns the size of a data type (e.g. Integer, or a user-defined type).

3.17 Encryption
The BasicCard contains a sophisticated mechanism for the encryption and decryption of commands and
responses. For full details of the algorithms, see Chapter 9: Encryption Algorithms.

3.17.1 Implementing Encryption in the MultiApplication BasicCard
Encryption and key handling are necessarily more complex processes in a MultiApplication
environment than in a single-application environment. See Chapter 5: The MultiApplication
BasicCard for more information.

3.17.2 Implementing Encryption in a Single-Application BasicCard
To implement the encryption mechanism for single-application BasicCard commands:

1. Use the KEYGEN program to generate a key file, containing cryptographic keys (and primitive
polynomials for the SG-LFSR algorithm if you are programming for the Compact BasicCard).

2. Include the generated key file in both the Terminal program and the BasicCard program.

3. Include the file COMMANDS.DEF in the Terminal program, to define the StartEncryption,
ProEncryption, and EndEncryption commands.

4. In the Terminal program, turn automatic encryption on and off as follows:

Compact and Enhanced BasicCards:

Call StartEncryption (P1=algorithm, P2=keynum, Rnd)
Call EndEncryption()

Professional BasicCard:

Call ProEncryption (P1=algorithm, P2=keynum, Rnd, Rnd)
Call EndEncryption()

Or, if you don’t know the card type in advance:

Call AutoEncryption (keynum, keyname$)
Call EndEncryption()

The AutoEncryption subroutine is defined in COMMANDS.DEF. The algorithm is selected
according to the key length and the card type. The keyname$ parameter is the pathname of the key,
and is only required for the MultiApplication BasicCard. For use with single-application
BasicCards, this parameter can be empty:

Call AutoEncryption (keynum, “”)

That’s all you have to do. An example program is provided in 9.13 Encryption – a Worked Example.

The program running in the BasicCard will usually want to know whether encryption is currently in
force. It can check this through the pre-defined variables Algorithm and KeyNumber, which contain
the two parameters P1 and P2 that were passed in the most recent StartEncryption command. If
encryption is not in force, both these variables have the value zero.

3. The ZC-Basic Language

4242

3.17.3 Key Declaration
In a Terminal program or a single-application BasicCard program, the Declare Key statement declares
a cryptographic key (the KEYGEN program outputs its keys as Declare Key statements in the key
file):

Declare Key keynum [(length [, counter])] [= b1, b2, b3, . . .]

keynum The key number, by which the key can be specified (for example, in a
StartEncryption command). It can take any value from 0 to 255, except in Enhanced
BasicCard programs, where 255 is not allowed.

length The length of the key. If absent, the key length defaults to 8 bytes. If an initial value
field (b1, b2, b3, . . .) is present, and no length is specified, the key length is set to the
number of bytes in the initial value field. (If the length is specified, the initial value
field is padded with zeroes to the required length.)

Note: In the Compact BasicCard, all keys must be 8 bytes long.

counter The error counter for the key (0 <= counter <= 15). If counter is zero, the key is
initially disabled. If counter is absent, the error counter for the key is initially
inactive. See 3.17.6 Key Error Counter for details.

Note: the counter parameter is allowed in all programs, but it is ignored in Terminal
programs and Compact BasicCard programs. This allows the same key file to be used
in all programs in an application.

b1, b2, b3, . . . The initial value of the key. If no initial value is provided, the key is initialised to
zeroes. The key may be changed later, in one of three ways:

• with Key(keynum) = string, except in a Compact BasicCard program (see 3.16.4
Encryption Functions);

• with the Read Key File statement in a Terminal program (see 3.17.5 Run-Time
Key Configuration);

• with the BCKEYS program in a Compact or Enhanced BasicCard (see 6.9.5 The
Key Loader BCKEYS.EXE).

3.17.4 Polynomial Declaration
The encryption algorithm described in 9.10 The SG-LFSR Algorithm requires two primitive
polynomials, of degree 31 and 32. (This is the encryption algorithm used by the Compact BasicCard.)
You don’t need to know what a primitive polynomial is, because the KEYGEN program generates
them for you, and outputs them to the key file as a Declare Polynomials statement:

Declare Polynomials = PolyA&, PolyS&

PolyA& A primitive polynomial of degree 31, the generator of the Linear Feedback Shift Register A.

PolyS& A primitive polynomial of degree 32, the generator of the Linear Feedback Shift Register S.

The polynomials may be initialised at compile time, or later – with the Read Key File statement in a
Terminal program, or with the BCKEYS program in a BasicCard.

3.17.5 Run-Time Key Configuration
The Terminal program can load keys and/or polynomials from a key file at run-time, with the statement

Read Key File filename

If this command fails, the File System variable FileError contains a non-zero error code indicating the
reason for the failure – see 4.12 The Definition File FILEIO.DEF for a list of error codes.

Except in Compact and MultiApplication BasicCard programs, keys can also be accessed as strings via
the Key(keynum) function. See 3.16.4 Encryption Functions for details.

3.17 Encryption

43

3.17.6 Key Error Counter
In the Enhanced, Professional, and MultiApplication BasicCards, each cryptographic key has an error
counter. If the error counter for a particular key is active, it limits the number of times that a Terminal
program can attempt to guess the key. For example, suppose the error counter for key keynum has an
initial value of 10. Whenever the BasicCard receives a command that is encrypted with key keynum:

• if the encryption is invalid, the error counter is decremented, and the BasicCard returns the status
code SW1-SW2 = swRetriesRemaining+X (&H63C0+X), where X is the new value of the error
counter. When the error counter reaches zero the key is disabled, until an Enable Key command is
executed in the BasicCard program (see below);

• if the encryption is valid, the error counter is reset to its initial value (in this case, 10);

• if the key is disabled (i.e. the error counter is already zero), the BasicCard responds with status
code SW1-SW2 = swKeyDisabled (&H6614).

So the Terminal program is given 10 chances, after which no more commands encrypted with key
keynum are accepted.

In an Enhanced or Professional BasicCard, there are two commands for setting a key’s error counter:

Enable Key keynum [(counter)]

Enables the key. If counter is present, the error counter for the key is activated, and its initial value is
set to Max (counter, 15). If counter is absent, or equal to 255, the error counter is deactivated (i.e. the
key will remain enabled regardless of how many times a command is badly encrypted with the key).

Disable Key keynum

Disables the key, until a subsequent Enable Key command is executed.

Notes:

1. This error counter mechanism only applies to the encryption of commands. Even if a key is
disabled, it can always be used from within a single-application BasicCard program. ZC-Basic
functions that use cryptographic keys are listed in 3.16.4 Encryption Functions.

2. In a MultiApplication BasicCard program, the WriteComponentAttr System Library procedure is
used to enable and disable keys.

3.17.7 DES Encryption Primitives
DES message encryption and decryption is based on the six block encryption primitives EK , DK ,
EDE2K , DED2K , EDE3K , and DED3K , as defined in 9.1 The DES Algorithm. In Terminal
programs, and all BasicCards with DES support, these primitives are available to the ZC-Basic
programmer via the DES function:

result$ = DES(type, key, block$)

type The type of primitive, as follows:

+1 or +56: EK(block) Single DES encryption (8-byte key required)
–1 or –56: DK(block) Single DES decryption (8-byte key required)
+3 or +112: EDE2K(block) Triple DES-EDE2 encryption (16-byte key required)
–3 or –112: DED2K(block) Triple DES-EDE2 decryption (16-byte key required)
+168: EDE3K(block) Triple DES-EDE3 encryption (24-byte key required)
–168: DED3K(block) Triple DES-EDE3 decryption (24-byte key required)

Cards that support the Triple Des-EDE3 algorithm (currently, Professional BasicCard ZC5.5
and MultiApplication BasicCard ZC6.5) accept all values; other cards accept only ±1 and ±3.
(The values 56, 112, and 168 denote the number of significant bits in the key.)

key Either a key number from 0 to 255, or a string containing a cryptographic key.

block$ A string containing, as its first 8 bytes, the block to encrypt or decrypt. If shorter than 8 bytes,
P-Code error pcBadStringCall (&H0D) is generated.

result$ The 8-byte result of the DES encryption or decryption function.

3. The ZC-Basic Language

4444

3.17.8 Certificate Generation
The Terminal program, and all BasicCards with DES support, can generate “digital certificates” using
cryptographic keys. A digital certificate is an electronic verification of a piece of data. Suppose you
have a network of dealers, who can unload cash credits from the cards that you issue to your customers,
in return for goods and services that they provide. At the end of the week, they come to you to
exchange these electronic cash credits for real money. How can you be sure that the dealers are honest?

Digital certificates are the answer. To unload credits from a customer’s card, the dealer sends a
message saying “I am dealer number A, and I want B credits”. The customer’s BasicCard will have its
own ID number C, and it can maintain a transaction counter D, which it increments after each
transaction. The BasicCard program puts these four numbers A, B, C, and D together into a string or a
user-defined variable, and generates a certificate using a secret key not known to the dealer or the
customer. This certificate is then returned to the dealer, who shows it to you to claim reimbursement
for the credits. You can write a Terminal program to check that A, B, C, and D really do generate the
correct certificate with the secret key. And because the key is known only to you and the BasicCard,
you know that the dealer hasn’t forged the certificate.

To generate a certificate:

S$ = Certificate(key, data)

where key is a key number from 0 to 255 or a string containing a cryptographic key, and data is the
data to be verified – either an expression of type String, or a fixed-length variable or array element.
Depending on the key length, this generates a Triple DES-EDE3 certificate (24-byte key; cards ZC5.5
and ZC6.5 only), or a Triple DES-EDE2 certificate (16-byte key), or a Single DES certificate (8-byte
key). The result, S$, is always 8 bytes long. The certificate generation algorithm is described in 9.3
Certificate Generation Using DES.

3.18 Random Number Generation
The Rnd built-in function returns a 4-byte random number. The Terminal and the various BasicCards
have different mechanisms for random number generation.

3.18.1 The Terminal
The Terminal program initialises its random number generator with a seed based on the system clock.
This ensures that the Rnd function returns a different sequence every time a program runs. You can
override this behaviour with the Randomize command:

Randomize seed

where seed is any expression of type Long or String.

You might want to do this for the following reasons:

• to generate a predictable sequence of random numbers while developing a program, to make
debugging easier;

• to use a more unpredictable seed than the system clock, for better security.

Note: The default behaviour of the random number generator is good enough for the encryption
algorithms used in communication with the BasicCard – these algorithms don’t depend critically on the
unpredictability of the initial values RA and RB (see 8.7.11 The START ENCRYPTION Command
for details). However, they do depend critically on the secrecy of the keys used, and for this purpose we
provide a high-quality random number generation mechanism in the KEYGEN program (see 6.9.4 The
Key Generator KEYGEN.EXE).

3.18.2 The Compact and Enhanced BasicCards
Each Compact and Enhanced BasicCard has a unique serial number burnt into its memory. The first
time in its life that the BasicCard generates a random number, this serial number is used as the seed.
The seed is then updated and stored in EEPROM for the next random number generation. This ensures
that:

3.19 Error Handling

45

• each BasicCard generates a different sequence of random numbers;
• a given BasicCard doesn’t generate the same sequence each time it is reset.

The Randomize command is not available in the BasicCard.

Note: The BasicCard simulators in the ZCMSIM and ZCMDCARD programs do generate the same
sequence of random numbers each time they run. This is because they have no access to a unique serial
number to seed the generation mechanism. But when the program is downloaded to a genuine
BasicCard, the random number sequence will become unpredictable.

3.18.3 The Professional and MultiApplication BasicCards
These BasicCards have a hardware random number generator, so the Rnd function returns a truly
random number.

3.19 Error Handling
If the P-Code interpreter in the BasicCard detects a run-time error, such as arithmetic overflow or
insufficient memory, it calls the ErrorHandler procedure. If there is no procedure with this name in
the program, it exits with the status code SW1 = sw1PCodeError (&H64). SW2 contains the P-Code
error code (see 8.6.2 BasicCard P-Code Interpreter for a list of these error codes). The
ErrorHandler procedure may perform clean-up operations, but it cannot cause execution to be
resumed at the statement that caused the error. The pre-defined variable PCodeError contains the
P-Code error code.

In the Enhanced, Professional, and MultiApplication BasicCards, the address of the instruction where
the error occurred is passed to the ErrorHandler procedure as an Integer parameter, so you can access
it by declaring e.g.

Sub ErrorHandler (PC As Integer)

3.20 BasicCard-Specific Features

3.20.1 Customised ATR
When the BasicCard is reset, it provides information about itself by means of the ATR (Answer To
Reset). The ATR contains technical information about the communication parameters that the card
uses, followed by up to fifteen bytes (the ‘Historical Characters’) by which the card can identify itself.
For example, the Historical Characters in the Enhanced BasicCard are of the form “BasicCard
ZCvvv”, where vvv is the firmware version number of the card. See 8.2 Answer To Reset for more
information on the ATR.

In a single-application BasicCard program, you can override the card’s built-in ATR with the following
pre-processor directive:

#Pragma ATR (ATR-Spec)

To override the default ATR in a MultiApplication BasicCard, create a file in the Root Directory with
the name “ATR” (see 5.3.1 ATR File), and initialise the file contents with a statement of the form:

ATR (ATR-Spec)

In both cases, ATR-Spec is a comma-separated list of communication parameters, some of which take
values:

param [= val] [, param [= val] , ...]

The following parameters are supported; for the meanings of these parameters, see ISO/IEC 7816-3:
Electronic signals and transmission protocols:

General Parameters
Direct or Inverse Character coding convention
T=0 and/or T=1 The protocols supported by the card

3. The ZC-Basic Language

4646

T=15 Forces T=15 to change the way the extra guard time is calculated
HB = string Historical Bytes

Global Interface Parameters
FI = val or F = val Clock rate conversion factor
DI = val or D = val Baud rate adjustment factor
N = val Extra guard time
TA2 = val Specific mode byte
XI = val Clock stop indicator
UI = val Class indicator
GI = val or G = val Clock factor

T=0 Parameters
WI = val Work waiting time in tenths of a second

T=1 Parameters
IFSC = n Information field size for the card
CWI = val or CWT = val Character waiting time
BWI = val or BWT = val Block waiting time
CRC or LRC Error detection code

Most of these parameters affect only the content of the ATR – they are ignored by the card itself. The
exceptions are Inverse, which at the time of writing is supported by BasicCards ZC5.4, ZC5.5, and
ZC6.5; and T=0/T=1, which are supported by all Professional and MultiApplication BasicCards.

Alternatively, you can specify the ATR as a sequence of bytes, with the statement

Declare Binary ATR = data

Here data must have a total length <= 31. Use this feature with care, as an invalid ATR can make the
card unusable. You should at the very least try out the ATR in a simulated BasicCard before testing it
in a real card.

Certain cards expect a flag byte as the last byte (which doesn’t count towards the 31-byte length
restriction). Examples of valid ATR’s can be found in the file BasicCardPro\Inc\ATRList.def,
supplied with the distribution kit. Unless you know exactly what you are doing, you should only use
this statement with data supplied by ZeitControl.

3.20.2 Application ID
The BasicCard has a pre-defined command GET APPLICATION ID (see 8.7.10 The GET
APPLICATION ID Command). You can use this command to check that the BasicCard in the card
reader contains your application. To configure an Application ID:

Declare ApplicationID = data

data Any sequence of Byte and String constants, with a total length <= 127.

3.20.3 Enabling and Disabling Encryption Algorithms
In a single-application BasicCard, you can enable or disable individual encryption algorithms:

{Enable | Disable} Encryption [AlgorithmID [, AlgorithmID, . . .]]

AlgorithmID The ID of an encryption algorithm. If no algorithm is specified, all available
algorithms are enabled or disabled. The following algorithms (defined in
COMMANDS.DEF) can be enabled or disabled:

Compact BasicCard
AlgSgLfsr &H11 SG-LFSR
AlgSgLfsrCrc &H12 SG-LFSR with CRC-16

Enhanced BasicCard
AlgSingleDes &H21 Single DES
AlgTripleDes &H22 Triple DES

3.20 BasicCard-Specific Features

47

Professional BasicCard
AlgSingleDesCrc &H23 Single DES with CRC-32
AlgTripleDesEDE2Crc &H24 Triple DES-EDE2 with CRC-32
AlgTripleDesEDE3Crc &H25 Triple DES-EDE3 with CRC-32
AlgAes128 &H31 AES with 128-bit key
AlgAes192 &H32 AES with 192-bit key
AlgAes256 &H33 AES with 256-bit key
AlgEaxAes128 &H41 EAX with AES-128
AlgEaxAes192 &H42 EAX with AES-192
AlgEaxAes256 &H43 EAX with AES-256
AlgOmacAes128 &H81 OMAC with AES-128
AlgOmacAes192 &H82 OMAC with AES-192
AlgOmacAes256 &H83 OMAC with AES-256

For maximum security, you should disable any encryption algorithms that you don’t plan to use.

Notes:

• This command is executed when the program is compiled, and it lasts for the lifetime of the card.
Algorithms can’t be enabled or disabled at run-time.

• Different Professional BasicCards support different combinations of the twelve algorithms listed
above.

3.20.4 Asking the Terminal for More Time
The BasicCard has a BWT (Block Waiting Time) of 1.6 seconds (Compact) or 12.8 seconds (all other
card types) – see 8.4 The T=1 Protocol for more information. If a command is going to take longer
than this to complete, it must request more time, otherwise the caller will time out (but see 3.21.9
Giving the Card More Time). It does this with a WTX (Waiting Time Extension) statement:

WTX BWT-units

BWT-units Any expression of type Byte: the number of multiples of BWT requested. WTX
requests are not cumulative – each request cancels all previous requests.

Note: Some card readers treat 255 as a special value. If in doubt, don’t use this value
– use 254 instead.

In the T=0 protocol, the BWT-units parameter is ignored, and a single NULL byte (&H60) is sent. This
resets the WWT (Work Waiting Time) time-out period – see 8.3 The T=0 Protocol for more
information.

3.20.5 Pre-Defined Variables
The BasicCard operating system has a number of internal variables that can be accessed from the ZC-
Basic language. Most of these have to do with communications – see Chapter 8: Communications for
details. The following are all Public variables (in RAM) of type Byte:

CLA Class byte – first byte of two-byte CLA INS command identifier.
INS Instruction byte – second byte of two-byte CLA INS command identifier.
P1 Parameter 1 of 4-byte CLA INS P1 P2 command header.
P2 Parameter 2 of 4-byte CLA INS P1 P2 command header.
Lc Length of IDATA field in command.
Le Expected length of ODATA field in response (supplied by caller).
ResponseLength Actual length of ODATA field in response (supplied by called command).
SW1 First status byte in response field SW1-SW2.
SW2 Second status byte in response field SW1-SW2.
Algorithm ID of currently active encryption algorithm. Commands can check this byte to

ascertain whether an appropriate encryption mechanism is in force. If no encryption

3. The ZC-Basic Language

4848

is currently active, Algorithm is zero. See 3.20.3 Enabling and Disabling
Encryption Algorithms for a list of algorithm IDs.

KeyNumber (Single-application BasicCards only) The number of the cryptographic key being
used by the currently active encryption algorithm. If no encryption is currently
active, KeyNumber is zero (but zero is also a valid key number, so you should not
use KeyNumber to check whether encryption is active – use Algorithm for this
purpose).

PCodeError If a run-time error occurs, and the program contains a subroutine with the name
ErrorHandler, then this subroutine is called. The error code is available to the
ErrorHandler subroutine in the variable PCodeError.

FileError The most recent error code generated by the file system (Enhanced and Professional
BasicCards only).

The following Integer variables are defined:

P1P2 Concatenation of P1 and P2.
SW1SW2 Concatenation of SW1 and SW2.
LibError The most recent library procedure error (only the Professional and MultiApplication

BasicCards pre-define this variable – an Enhanced BasicCard program declares it in
the library.def file).

SMKeyCID (MultiApplication BasicCard only) The Component ID of the Key being used by the
currently active encryption/authentication algorithm as a result of a START
ENCRYPTION command. If none is currently active, SMKeyCID is zero.

ExtAuthKeyCID (MultiApplication BasicCard only) The Component ID of the Key used in the most
recent EXTERNAL AUTHENTICATE command, if successful.

VerifyKeyCID (MultiApplication BasicCard only) The Component ID of the Key used in the most
recent VERIFY command, if successful.

3.21 Terminal-Specific Features

3.21.1 Screen Output
Screen output uses the Cls and Print statements in conjunction with the four pre-defined variables
FgCol, BgCol, CursorX, and CursorY (see 3.21.10 Pre-Defined Variables).

The Cls command clears the screen, and sets CursorX and CursorY to 1:

Cls

The Print statement:

Print [field | separator] [field | seperator] . . .

field Any Byte, Integer, Long, Single, or String expression

separator ‘;’ (semi-colon) Leaves the output column unchanged.
‘,’ (comma) Advances the output column to the next output field (an output

field is 14 characters wide).
Spc(n) Prints n space characters.
Tab(n) Advances the output column to position n.

After the print statement, the cursor advances to the start of the next line, unless the last character is a
separator. (So you can stay on the same output line by adding a semi-colon at the end of the command.)

3.21.2 Keyboard Input
InKey$ Returns a string containing 0, 1, or 2 bytes.

• 0 bytes: no character is waiting in the keyboard buffer.
• 1 byte: a regular ASCII key was pressed.

3.21 Terminal-Specific Features

49

• 2 bytes: an extended-ASCII key was pressed. In this case, the first byte
indicates which auxiliary keys were down (&H01=Shift, &H02=Ctrl,
&H04=Alt), and the second byte contains the extended-ASCII code.

Line Input X$ Reads a line from the keyboard into the string variable X$, until the carriage
return key is pressed. Extended-ASCII keys are ignored.

Input variable-list Reads the variables in the list from the keyboard. If the list contains more than one
variable, the user must separate the values with commas or spaces. This statement
can also appear on the right-hand side of an assignment statement:

n = Input variable-list

This returns the number of variables in the list that were successfully input.

3.21.3 Communications
Three functions are provided for determining the status of the card reader and card. These functions
return a status code in SW1–SW2, just like command calls:

CardReader [(name$)]

Attempts to detect a card reader via the configured serial port. If a string parameter is passed, the
identification string of the card reader is returned. If the BasicCard is being simulated in the PC, the
words “Simulated Card Reader” are returned in the name$ parameter.

Status Codes in SW1-SW2:

swCommandOK Card reader detected
swNoCardReader Card reader not detected
swCardReaderError Invalid response from card reader

CardInReader

Returns swCommandOK (&H9000) if a card is in the card reader.

Status Codes in SW1-SW2:

swCommandOK Card is in card reader
swNoCardReader Card reader not detected
swCardReaderError Invalid response from card reader
swNoCardInReader No card in reader

ResetCard [(ATR$)]

Attempts to reset the card, returning swCommandOK (&H9000) if the card responded with a valid
Answer To Reset. If a string parameter is passed, the Historical Bytes of the Answer To Reset are
returned. See also 3.20.1 Customised ATR.

Status Codes in SW1-SW2:

swCommandOK Valid Answer To Reset received
swNoCardReader Card reader not detected
swCardReaderError Invalid response from card reader
swNoCardInReader No card in reader
swT1Error T=1 protocol error (see8.4 The T=1 Protocol)
swCardError Invalid response from card
swCardTimedOut Card failed to send an ATR within the prescribed time

3.21.4 PC/SC Functions
Two functions are provided for obtaining information about the PC/SC-compatible card readers
configured in the system:

nReaders = PcscCount

Returns the number of configured PC/SC card readers, as an Integer.

Status codes in SW1-SW2:

3. The ZC-Basic Language

5050

swNoPcscDriver The PC/SC driver is not installed in the system.
swPcscError The PC/SC driver returned an unexpected error code.

ReaderName = PcscReader (ReaderNum)

Returns the name of PC/SC card reader ReaderNum, as a String. If ReaderNum is zero, the name of the
default PC/SC reader is returned. To access PC/SC reader number ReaderNum, set the pre-defined
variable ComPort to ReaderNum+100.

Status codes in SW1-SW2:

swNoCardReader ReaderNum is less than zero or greater than nReaders.
swNoPcscDriver The PC/SC driver is not installed in the system.
swPcscError The PC/SC driver returned an unexpected error code.

Note: To configure a default PC/SC reader, add the reader’s name to the Windows® system registry, in
the field “HKEY_CURRENT_USER\Software\ZeitControl\BCPCSC\Default” (you can do this with
the Windows® system tool Regedit.Exe). If no such field is found, reader number 1 is the default.

3.21.5 I/O Logging
The Open Log File statement initiates the logging of all I/O between the Terminal program and the
BasicCard program:

Open Log File filename

Previous contents of the log file are destroyed. If the file open fails, the pre-defined variable FileError
is set to a non-zero value – see 4.12 The Definition File FILEIO.DEF for error codes. The statement

Close Log File

ends I/O logging and closes the log file.

3.21.6 Date and Time
The string function Time$ returns a 24-character string containing the current date and time in fixed
format:

″Ddd Mmm DD HH:MM:SS YYYY″ (for example: ″Wed Jul 07 15:50:35 2004″).

3.21.7 Saving Eeprom Data
The statement

Write Eeprom [(filename)]

writes the permanent Eeprom data in the Terminal program to a disk file. If filename is not given, the
data is written back to the original image file (or debug file). If the file couldn’t be opened for any
reason, the pre-defined variable FileError is set to a non-zero value – see 4.12 The Definition File
FILEIO.DEF for a list of error codes.

Note: The Write Eeprom statement is only valid if the Terminal program is running in the ZCMSIM
P-Code interpreter or the ZCMDTERM Terminal Program debugger. Programs containing Write
Eeprom statements can’t be compiled into executable files.

3.21.8 Automatic Encryption
{ Enable | Disable } Encryption

The P-Code interpreter that runs the Terminal program monitors all commands to the BasicCard,
watching for START ENCRYPTION and END ENCRYPTION commands. If it sees a well-formed
START ENCRYPTION command that receives a valid response from the BasicCard, it automatically
turns on encryption of commands and decryption of responses, until it sees an END ENCRYPTION
command. If for any reason you want to disable this monitor, you can do it with a Disable Encryption
command. You can turn the monitor back on at any time with Enable Encryption.

3.21 Terminal-Specific Features

51

3.21.9 Giving the Card More Time
Sometimes the BasicCard needs more than the Block Waiting Time to execute a command. In
principle, the card is responsible for requesting more time, which it does with a WTX statement – see
3.20.4 Asking the Terminal for More Time. However, if you have a ZeitControl Chip-X® card
reader, you can also override the default Block Waiting Time from the Terminal program with a WTX
statement:

WTX seconds

seconds Any expression of type Byte: the number of seconds to give the card before timing
out. Unlike WTX requests in the BasicCard program, this time-out value remains in
effect until explicitly cancelled (by WTX 0). If seconds is equal to 255, the card is
given unlimited time to respond.

The Terminal program waits for a response from the card until both time-outs (those set by the
BasicCard program and the Terminal program) have expired.

Note: This feature is only available if ComPort <= 4, and you are accessing a ZeitControl Chip-X®

card reader via the serial port. The PC/SC standard interface, and the CyberMouse® card reader, do not
support this feature. A more general way to increase time-outs is to adjust WI or BWI in the ATR –
see 3.3.4 The #Pragma Directive and 3.20.1 Customised ATR for details.

3.21.10 Pre-Defined Variables
The Terminal P-Code interpreter contains the following Public pre-defined variables, of type Byte:

ComPort The number of the COM port that the card reader is attached to. To specify PC/SC
card reader number n, set ComPort = n+100 (or ComPort = 100 for the default
PC/SC reader – see 3.21.4 PC/SC Functions for details).
Note: The value of ComPort at program start-up is taken from the environment
variable ZCPORT, if it exists; otherwise the Windows® Registry variable ZCPORT
in the directory HKEY_CURRENT_USER\Software\ZeitControl\BasicCardPro,
if it exists; otherwise it takes the value 1.

ResponseLength The length of the ODATA field in the last response received from the card.
SW1 First byte of SW1-SW2 status field in the last response received from the card.
SW2 Second byte of SW1-SW2 status field in the last response received from the card.
Algorithm ID of currently active encryption algorithm. Commands can check this byte to

ascertain whether the appropriate encryption mechanism is in force. If no encryption
is currently active, Algorithm is zero. See 3.20.3 Enabling and Disabling
Encryption Algorithms for a list of algorithm IDs.

PCodeError If a run-time error occurs, and the program contains a subroutine with the name
ErrorHandler, then this subroutine is called. The error code is available to the
ErrorHandler subroutine in the variable PCodeError.

FgCol Foreground colour for Print statements to the screen (0-15).
BgCol Background colour for Print statements to the screen (0-15).
CursorX X-coordinate of text cursor (1-80).
CursorY Y-coordinate of text cursor (1-25).
FileError The most recent error code generated by a file I/O operation.
nParams Number of command-line parameters (see 6.9.2 The P-Code Interpreter

ZCMSIM.EXE).
Two Integer variables are defined:

KeyNumber The number (for a single-application BasicCard) or the Component ID (for a
MultiApplication BasicCard) of the cryptographic key being used by the currently
active encryption algorithm. If no encryption is currently active, KeyNumber is zero
(but zero is also a valid key number, so you should not use KeyNumber to check
whether encryption is active – use Algorithm for this purpose).

SW1SW2 Concatenation of SW1 and SW2.

3. The ZC-Basic Language

5252

Two String arrays are defined:

Param$(1 To nParams) Command-line parameters passed to the ZCDOS program (see 6.9.2 The
P-Code Interpreter ZCMSIM.EXE).

Key(0 To 255) Cryptographic keys.

3.22 Miscellaneous Features
This section lists all the ZC-Basic statements that are not covered in the preceding sections or in
Chapter 4: Files and Directories.

3.22.1 Overflow Checking
{ Enable | Disable } OverflowCheck

Normally, if the result of an arithmetic operation is too big or too small to be represented in the target
type, a P-Code error is generated. You can enable or disable this overflow checking with Enable
OverflowCheck or Disable OverflowCheck. These statements are executed at run-time, and don’t
apply to the whole program. (So if you want to disable overflow checking for the whole program, then
Disable OverflowCheck should appear in your initialisation code.)

Note: This statement only affects whole-number arithmetic (Byte, Integer, and Long data types).
Floating-point overflow checking (Single data type) cannot be turned off.

3.22.2 DefType Statement
A DefType statement specifies the default type of variables, arrays, and functions that begin with a
certain letter or range of letters:

{ DefByte | DefInt | DefLng | DefSng | DefString } range [, range, . . .]

range Either a single letter, or a range of letters separated by a minus sign (e.g. I–N). The
case of the letter(s) is not significant.

The initial setting is DefInt A–Z, i.e. all variables, arrays, and functions have type Integer by default.

3.22.3 Array Subscript Base
An array subscript range takes the form

[lower-bound To] upper-bound

If the optional lower-bound is missing, it defaults to 0. You can change this default value with the
Option Base command, which applies to all subsequent array declarations:

Option Base subscript-base

subscript-base Any constant expression. In the Compact and Enhanced BasicCards, it must satisfy
–32 <= subscript-base <= +31.

Or you can specify that the lower bounds of array subscripts must always be explicitly declared, with

Option Base Explicit

3.22.4 Explicit Declaration of Variables and Arrays
By default, ZC-Basic allows implicit declaration of variables and arrays:

• If it meets a variable that it doesn’t recognise in an expression or an assignment statement, it will
treat it as a newly-declared variable. The type of the variable is determined from its name, as
described in 3.7 Data Declaration.

• If a ReDim statement contains an unrecognised array name, the compiler inserts an implicit Dim
statement to declare the array.

3.23 Technical Notes

53

The Basic programming language has always behaved this way. However, this can be dangerous, as it
accepts mis-typed variable names as new variables. In the following example, this results in
TransactionState ending with the value 1 instead of 13:

TransactionState = 12
...
TransactionState = TransatcionState + 1

The compiler will issue a warning message whenever it implicitly declares a variable in this way. You
can override this behaviour in two ways:

Option Explicit

This tells the compiler not to accept variables or array names that haven’t been explicitly declared. It
applies only to following code; preceding code can contain implicit declarations.

Option Implicit

This tells the compiler to accept implicitly-declared variables without issuing a warning message.

3.23 Technical Notes

3.23.1 Parameter Size Limits
The maximum total size of all the parameters in a procedure call is approximately 128 bytes. More
precisely, the compiler checks that the sum of the following contributions is <= 128:

• the total size of all the fixed-length parameters (including String*n);
• 2 bytes for each parameter of array type;
• 3 bytes for each String parameter (or 2 bytes for the final String parameter to a Command);
• for a Function, the size of the return value (2 bytes if this is a String);
• 2 bytes for the return address (unless it’s a Command);
• the frame overhead (2 bytes for the Compact and Enhanced BasicCards, otherwise 4 bytes).

See also Note 4 in 3.12.3 Command for more on the final String parameter to a Command.

3.23.2 Array Descriptor Format
An array in ZC-Basic consists of a fixed-length array descriptor, and a data area (which is of variable
length if the array is Dynamic). In a Compact or Enhanced BasicCard program, if an array has n
dimensions, then its descriptor occupies 2*n + 4 bytes:

Address of data area (0 if not allocated) (2 bytes)
Size of each element (1 byte) D n (7 bits)

LO(1) (6 bits) RANGE(1) (10 bits)
.

LO(n) (6 bits) RANGE(n) (10 bits)

D This bit is 1 for Dynamic arrays, 0 for Fixed arrays.
LO(i) Lower bound for subscript(i): –32 <= LO(i) <= 31.
RANGE(i) Range for subscript(i): 0 <= RANGE(i) <= 1023.

The upper bound of subscript(i) is equal to LO(i) + RANGE(i).

In Terminal programs, and Professional and MultiApplication BasicCard programs, LO(i) and HI(i)
are 2-byte integers, so the descriptor occupies 4*n + 4 bytes.

3. The ZC-Basic Language

5454

3.23.3 String Parameter Format
A variable of type String is a 2-byte pointer to a (len, data) pair:

address (2 bytes) len (1 byte) data (len bytes)

This uses len+3 bytes of storage (but if len is zero, then address is zero too, so only 2 bytes are used).

A variable of type String*n requires just n bytes of storage:

data (n bytes)

A procedure parameter of type String*n also takes up n bytes on the P-Code stack.

However, a procedure parameter of type String is rather more complicated. Two requirements must be
fulfilled:

• A procedure can change the value of a String variable passed as a parameter;
• A String*n variable can be passed as a String parameter.

So a String parameter takes up 3 bytes on the P-Code stack. If a fixed-length String*n variable was
passed, then the first of these bytes contains the length n (0-254) and the next two bytes contain the
address of the data. Otherwise, the first byte contains 255 (&HFF) and the next two bytes contain the
address of the pointer (not the address of the data). So if the address of the data has to be changed
because the string increases in length, the String variable can be updated to point to the new data. (By
the way, this is the reason for the 254-byte length restriction on all strings.)

3.23.4 Memory Allocation in Single-Application BasicCards
The ZC-Basic compiler calculates the sizes of all the memory regions in RAM and EEPROM. Any
memory left over is assigned to the two heaps, RAMHEAP and EEPHEAP. These regions are for run-
time memory allocation. (See 10.4 Run-Time Memory Allocation for the format of the allocated
memory blocks.)

The ZC-Basic P-Code interpreter uses run-time memory allocation for three kinds of data: variable-
length String data, Dynamic arrays, and files. Files and Eeprom data are allocated as Permanent
blocks in EEPHEAP. Other data is allocated in RAMHEAP if there is room, but if not, it is allocated
as Temporary blocks in EEPHEAP. All Temporary blocks are freed the next time the BasicCard is
reset or the Terminal program is started. EEPROM writes require up to 6 milliseconds to complete, so a
BasicCard program runs more slowly when it has to use EEPHEAP in this way.

See 5.2.4 Memory Allocation for information on memory allocation in the MultiApplication
BasicCard.

3.23.5 Single-to-String Conversion
The operating system in the Enhanced BasicCard consists of 17.7K of code; the chip, however,
contains only 17K of ROM. The last 705 bytes contain the Single-to-String conversion routines. If an
Enhanced BasicCard program requires these routines, the ZCMBASIC compiler automatically loads
them into EEPROM (in the STRVAL region – see 10.1.2 The Enhanced BasicCard). This means, of
course, that the amount of EEPROM available for your code and data is reduced by 705 bytes.

If any of the following ZC-Basic statements occur in an Enhanced BasicCard program, this STRVAL
region will be loaded:

• Str$(val) with a val parameter of type Single;
• Val!(string) (String-to-Single conversion);
• Print to file, with a parameter of type Single.

Some versions of the Professional BasicCard do not support Single-to-String conversion – see the
Professional BasicCard Datasheet for details.

55

4. Files and Directories

4.1 Directory-Based File Systems
Everybody who owns a PC is familiar with directory-based file systems. Each disk drive has a special
directory, called the root directory, which contains data files and sub-directories. These sub-directories
themselves can contain data files and sub-directories, and so on. This determines a tree of directories,
in which any directory in the tree can contain data files and sub-directories. The directory containing a
given data file or sub-directory is called its parent directory. (directory is the traditional term, which is
used throughout this chapter; Microsoft Windows® calls its directories folders.)

4.1.1 File and Directory Names

Under Windows®, filenames can be up to 255 characters long, and may contain any printable character
(including the space character), except the following:

\ Backslash / Slash : Colon * Asterisk
? Question mark ″ Double quote < Left angle-bracket > Right angle-bracket
| Vertical bar

Case is not significant when referring to an already existing file or directory. So if a file has the name
“FILE.NAM”, you can access it as “File.Nam” or “FiLe.nAm” or whatever. However, Windows®

retains the case of the characters specified when the file was originally named. So if you create a file as
“File.Nam” and then ask for a directory listing, Windows® lists it as “File.Nam”.

4.1.2 Path Names
Each file and directory can be uniquely identified by a full path name. This consists of the disk drive
name, followed by every sub-directory on the path from the root directory to the parent directory,
followed by the name of the file or directory itself. The disk drive name is a letter A-Z followed by a
colon, e.g. “C:” or “A:”. (Lower-case letters may also be used to refer to disk drives, but a drive name
returned by a ZC-Basic function will always be upper-case.) The drive name is immediately followed
by a backslash character (this signifies the root directory); and subsequent directory names in the path
are separated by backslash characters ‘\’. For example, a full path name might be
“C:\1997 Clients\Account Data”.

To save having to give the full path name every time, every disk drive in the system has a current
directory, and the system as a whole has a current drive. If the disk drive name is missing from the
front of a path name, the current drive is assumed. And if the first character after the disk drive name is
not a backslash, then the chain of directories is followed starting from the current directory for the
drive, instead of the root directory. Such a path name is called a relative path name. For instance,
suppose the current drive is “C:”, and the current directories for drives “A:” and “C:” are
“\Clients.97” and “\Programs\CPP” respectively. Then the relative path names
“A:August\TOTALS.DAT” and “Headers\SUM.H” expand to the full path names
“A:\Clients.97\August\TOTALS.DAT” and “C:\Programs\CPP\Hheaders\SUM.H”
respectively.

The directory names “.” and “..” have special meanings: “.” denotes the current position in the chain
of directories, and “..” denotes the parent directory. So “.\” in a path has no effect, and “..\” goes
back to the previous directory in the chain. For instance, in the previous example, the path name
“..\Basic\FILEIO.BAS” expands to “C:\Programs\CPP\..\Basic\FILEIO.BAS”,
which is the same as “C:\Programs\Basic\FILEIO.BAS”. The single-dot notation is useful
when a directory is required as a parameter to a file system operation; for example, the ZC-Basic
statement Name ″..\FileList″ As ″.\″ moves the file “FileList” from the parent
directory to the current directory.

4. Files and Directories

5656

4.2 The BasicCard File System
The Enhanced, Professional, and MultiApplication BasicCards contain a directory-based file system,
with the same file-naming rules as those described in the previous section for Windows® (except that
the maximum length of a full path name is 254 characters). The BasicCard has one root directory, so
path names don’t begin with a disk drive name. With the exception of the commands CurDrive,
ChDrive, and SetAttr, the ZC-Basic file and directory commands available to a BasicCard program
are the same as those available to a Terminal program.

4.2.1 File Access from a Terminal Program
If the BasicCard allows it, files and directories in the card can be accessed from a Terminal program,
just as if the card was a diskette. The card has the special drive name “@:”. Suppose the BasicCard
contains a file “\Transport\Bus\Credits”. Then the full path name of this file from the point of
view of the Terminal program is “@:\Transport\Bus\Credits”. And if the Terminal program
sets the current drive to “@:” and the current directory to “\Transport”, it can refer to the file as
simply “Bus\Credits”. The full range of file and directory commands is available to the Terminal
program for accessing BasicCard files and directories, subject to appropriate access being granted.

Each file or directory in the BasicCard has its own access conditions, specifying the circumstances
under which the Terminal program is allowed read and write access.

If the card is a MultiApplication BasicCard, the access conditions also specify which Applications are
allowed read and write access. For information on the MultiApplication BasicCard file security
mechanism, see 5.1.3 Component Access Control.

In a single-application BasicCard, these access conditions can be set and changed with Lock and
Unlock statements. There are three types of access condition: Read, Write, and Custom. The
following general rules apply to file and directory access in a single-application BasicCard:

• Read and Write access to all files and directories is available to the BasicCard program at all
times.

• Read and Write access to all files and directories is available to the Terminal program as long as
the BasicCard is in state LOAD or PERS (see 8.7.1 States of the BasicCard).

• Otherwise, to access a file or directory from the Terminal program, Read access is required to all
directories in the path from the root to the parent. To delete a file or directory, or to change its
access conditions, Write access is required to the file or directory, and to its parent directory. (In
particular, when the card is in state TEST or RUN, the Terminal program can never change the
root directory’s access conditions, because the root directory has no parent.)

• If a Custom lock is placed on a file or directory, it is locked against Read and Write access every
time the card is reset. It can only be unlocked from within the BasicCard program, after which the
file’s regular Read and Write access conditions apply until the next reset. So you can write a
command that unlocks a particular file if the Terminal program sends the correct PIN number, for
instance.

The Read and Write access conditions on a file or directory can be:

• Allowed – access is allowed from the Terminal program;
• Forbidden – access is forbidden from the Terminal program; or
• Keyed – access is allowed only if encryption with the appropriate key is enabled.

Read and Write access conditions and key numbers can be set independently of each other. If access is
Keyed, up to two keys can be specified – if encryption with either of the two keys is enabled, access is
allowed. The encryption algorithm must be Triple DES for keys at least 16 bytes long, and Single
DES for shorter keys. So to access a Keyed file from a Terminal program, you must first call
StartEncryption with the appropriate algorithm and key number – see 3.17.1 Implementing
Encryption.

Note: The default access conditions on the root directory are Read=Allowed and Write=Forbidden.

4.3 File System Commands

57

4.2.2 Pre-Defined Files and Directories
In a BasicCard program, you can pre-define directories and data files using Dir and File statements.
The compiler constructs the appropriate structures in EEPROM for downloading to the card. See 4.11
File Definition Section for details.

4.2.3 Storage Requirements
In the BasicCard, data files and directories are stored in EEPROM. To make efficient use of the limited
space available, you should know how much memory is used. A data file or directory allocates space
for its header and its name; a data file owns data blocks as well:

• A directory header requires 13 bytes of EEPROM; a data file header requires 19 bytes.
• The name of a file or directory takes up n+2 bytes of EEPROM, where n is the number of

characters in the name.
• Each data block in a data file uses n+4 bytes of EEPROM, where n is the block length specified

when the file was created. (The default block length is 32 bytes.) These blocks are allocated
automatically when data is written to a file. Note: Contiguous data blocks are merged if they are
also contiguous in EEPROM; this saves the overhead of 4 bytes per block. So if you are creating a
file that is going to be written to just once, you can achieve optimum EEPROM usage by
specifying a block length of 1 byte.

As well as these EEPROM requirements, the file system in the Enhanced and Professional BasicCards
uses (6 * nFiles + 7) bytes of RAM, where nFiles is the number of open file slots configured (see 3.3.8
Number of Open File Slots).

4.3 File System Commands
This chapter describes all the file system commands available to the ZC-Basic programmer. There are
three cases that the ZC-Basic interpreter must distinguish:

1. A Terminal program accessing the file system in the PC (disk drives “A:” through “Z:”).
2. A Terminal program accessing the BasicCard file system (disk drive “@:”).
3. A BasicCard program accessing its own BasicCard file system (no disk drive).

However, these cases all look the same to the ZC-Basic programmer. Apart from the disk drive names,
there are no differences, unless explicitly noted in the command descriptions that follow.

After each command, its required access conditions are listed. These access conditions apply to a
Terminal program (if the BasicCard is in state TEST or RUN), and to an Application running in the
MultiApplication BasicCard. They don’t apply to an Application running in a single-application
BasicCard; such an Application has access to all files and directories.

All file system commands return a status byte in the pre-defined variable FileError. A zero value
(feFileOK) indicates success. A non-zero value is an error code, and indicates the first error that
occurred since this variable was last set to zero. (It is reset to zero every time a new command is
received from the Terminal program; you may also set it to zero yourself if you want to continue after
an error.) Error codes for each command are listed below.

As well as the error codes documented below under individual commands, there are some general error
codes that apply to all commands:

feInvalidDrive In cases 1 and 2 above (Terminal program), a disk drive name in a path was
not a letter or “@:”.

feBadFilename A filename contains an invalid character, or is too long (see 4.1.1 File and
Directory Names).

feBadFilenum A file number is out of range. In ZC-Basic, an open file is referred to by a
file number. In a Terminal program, this number must be between 0 and 32
inclusive (with 0 indicating the screen or keyboard). In a BasicCard
program, the number must be between 1 and the number of open file slots
(see 3.3.8 Number of Open File Slots).

4. Files and Directories

5858

feFileNotFound A file or directory specified in a path name does not exist.

feFileNotOpen The file number passed to the command is not associated with an open file.
Note: This need not be the result of a programming error. If a Terminal
program opens a file in the BasicCard, and then calls a BasicCard command,
the BasicCard command can close all files unilaterally – including remotely-
opened files – by using the Close command with no parameters. This is so
that the BasicCard program can always find a free open file slot when it
needs one.

feAccessDenied The access conditions on a file or directory do not allow the execution of the
command.

feBadFileChain The file system in the BasicCard is corrupted.

feBadParameter An invalid parameter value was passed to the command.

feOutOfMemory The BasicCard has insufficient free EEPROM to execute the command.

feUnexpectedError An operating system command in the PC returned an unexpected error code
when a file system function was called.

feCommsError In case 2 above (Terminal program accessing the BasicCard file system), the
command failed because of a communications failure with the BasicCard.
The status bytes describing the communications failure can be found in the
pre-defined variables SW1 and SW2.

feNoFileSystem The card has no file system installed, either because
• it’s a Compact BasicCard; or
• no program has yet been downloaded to the card; or
• the file system was disabled with a #Files 0 directive (see 3.3.8

Number of Open File Slots).

Definitions of these error codes, as well as all the other constants that appear in this chapter, are
contained in the file FILEIO.DEF. This file is supplied in the distribution kit, and is listed in 4.12 The
Definition File FILEIO.DEF.

4.4 Directory Commands

4.4.1 Creating a Directory
The MkDir command creates a new directory (but see also 4.11 File Definition Sections):

MkDir path

path The path name of the new directory. A final backslash ‘\’ is optional.

Access Conditions:

Write access to the parent directory is required. The Read and Write access conditions of the new
directory are the same as those of the parent directory.

Error Codes:

feFileNotFound The parent directory does not exist.
feFileAlreadyExists A file or directory with the given path name already exists.
feNameTooLong The full path name of the directory would be longer than 254 characters.

4.4.2 Deleting a Directory
The RmDir command deletes an existing directory. The directory must be empty before it can be
deleted:

RmDir path

path The path name of the directory. A final backslash ‘\’ is optional.

4.4 Directory Commands

59

Access Conditions:

Single-application BasicCard: Write access is required, both to the directory and to its parent directory.
MultiApplication BasicCard: Delete access is required (but not to the parent directory).

Error Codes:

feFileNotFound The directory does not exist.
feNotDirectory The file is a data file, not a directory. Use Kill to delete data files.
feDirNotEmpty The directory is not empty, and therefore can’t be deleted.

4.4.3 Setting the Current Directory
The ChDir command sets the current directory.

ChDir path

path The path name of the new current directory. A final backslash ‘\’ is optional.

Note (Terminal programs only): If the path contains a disk drive name, the current directory for that
disk drive is changed, but the current disk drive is not changed. Use ChDrive to change the current
disk drive.

Access Conditions:

Read access to the directory is required.

Error Codes:

feFileNotFound The directory does not exist.
feNotDirectory The file is a data file, not a directory.

4.4.4 Retrieving the Current Directory
The CurDir function returns the path of the current directory as a String:

S$ = CurDir [(drive)]

drive The disk drive for which the current directory is requested. The first character must
be a letter (‘A-Z’ or ‘a-z’), or the character ‘@’. If absent, the current directory of the
current disk drive is returned.

Note: The optional drive parameter is accepted only in Terminal programs.

Access Conditions:

No access conditions are required for this command.

Error Codes:

feInvalidDrive The disk drive specified in the drive parameter does not exist.
feNameTooLong The full path name of the current directory is longer than 254 characters

(Terminal program only).

4.4.5 Renaming a File or Directory
The Name command renames a file or directory, or moves it to a new directory, or both. It cannot be
used to move a file from one disk drive to another.

Name OldPath As NewPath

OldPath The old path name of the file or directory.

NewPath The new path name. If no backslash appears in NewPath, the file or directory is
renamed without being moved. If NewPath ends with a backslash character ‘\’, the
file or directory is moved without being renamed.

Note: Under MS-DOS®, directories can be renamed, but not moved.

4. Files and Directories

6060

Access Conditions:

Write access is required (i) to the file or directory being renamed, (ii) to its parent directory, and (iii) to
the destination directory if different from the current parent directory.

Error Codes:

feFileNotFound The file specified in OldPath does not exist, or the directory specified in
NewPath does not exist.

feFileAlreadyExists The file specified in NewPath already exists.
feNameTooLong The operation would result in a file or directory in the BasicCard with a full

path name longer than 254 bytes.
feRenameError One of the following error conditions:

• OldPath is the root directory, which cannot be renamed.
• NewPath and OldPath are on different disk drives.
• An attempt was made to move a directory under MS-DOS®.

feRecursiveRename The directory in NewPath is a sub-directory of OldPath, so the rename
operation would result in an endless loop in the directory tree.

4.4.6 Searching for Files
Use the Dir command to search for files and directories matching a given wild-card specification. This
has two forms:

nFiles = Dir (filespec) Returns the number of matching files and directories, as an Integer.
file$ = Dir (filespec, n) Returns the name of the nth matching file or directory, as a String.

filespec The path name of the file(s) to search for. The last component of the path may
contain the wild-card characters ‘?’ (matching any single character) and ‘*’
(matching any sequence of zero or more characters). For example, “A*” finds all
filenames that start with the character ‘A’ or ‘a’, and “*=?” finds all filenames whose
penultimate character is ‘=’.

n The number of the matching file, 1 <= n <= nFiles.

Notes:

1. If filespec refers to a file or files in the PC, the first Dir command for a given filespec saves all the
matching files in memory. This list is retained for future Dir commands of the second form that
have the same filespec parameter (unless a ZC-Basic command intervenes that can change the
directory contents). This is a major speed improvement in most cases. However, if another process
changes the directory contents, ZC-Basic won’t know about it, and will continue to use the original
list. You can override this at any time and re-load the list from the disk, by calling a Dir command
of the first form.

2. ZC-Basic uses the host operating system to match wild-card specifications in the PC. MS-DOS®

and Windows® handle wild-card characters a little differently, due to the differences in what
constitutes a valid filename, but “*.*” matches all files and directories in both systems.

3. The Enhanced BasicCard uses a case-insensitive matching algorithm that treats the full stop
(period) character ‘.’ no differently from any other character (unlike MS-DOS® and Windows®).
However, as a special case, the wild-card string “*.*” matches all files and directories.

Access Conditions:

Read access to the parent directory is required.

Error Codes:

feBadFilename filespec is not a valid path name (this error code is also returned if filespec
contains wild-card characters in any component except the last).

feBadFilenum n is less than 1 or greater than nFiles.

4.4 Directory Commands

61

4.4.7 Setting the Attributes of a File or Directory
The SetAttr command sets the attributes of a file or directory:

SetAttr filename, attributes

filename The path name of the file or directory.

attributes A bit map of the attributes to set. The attributes available depend on the host
operating system. See 4.4.8 Retrieving the Attributes of a File or Directory for
details.

Note: This command is available in Terminal programs only.

Access Conditions:

Access conditions are not relevant for SetAttr – a BasicCard file has no attributes that can be changed.

Error Codes:

feRemoteFile filename is a BasicCard file, so it has no attributes that can be changed.

4.4.8 Retrieving the Attributes of a File or Directory
The GetAttr command returns the attributes of a file or directory:

attributes = GetAttr (filename)

filename The path name of the file or directory.

attributes A bit map of the attributes of the file or directory. The attributes that can be returned
depend on the host operating system, as follows:

• The BasicCard file system supports two attributes:
faDirectory Indicates that the file is a directory, and not a data file.
faCardFile Indicates that the file or directory is in the BasicCard.

• MS-DOS® supports these two attributes, plus the following:
faReadOnly Indicates a read-only file.
faHiddenFile Indicates a hidden file.
faSystemFile Indicates a system file.
faArchived Indicates that file has been backed up since last changed.

• Microsoft Windows® supports all the above attributes, plus the following:
faNormal Indicates that no other attribute bits are set.
faTemporary Indicates that file is being used for temporary storage.

These constants are defined in the file FILEIO.DEF.

Access Conditions:

Read access is required to the parent directory (but not to the file itself).

4.4.9 Setting the Current Disk Drive
The ChDrive command sets the current disk drive.

ChDrive drive

drive The disk drive for which the current directory is requested. The first character must
be a letter (‘A-Z’ or ‘a-z’), or the character ‘@’.

Note: This command is available in Terminal programs only.

Access Conditions:

No access conditions are required for this command.

Error Codes:

feInvalidDrive The disk drive specified in the drive parameter does not exist.

4. Files and Directories

6262

4.4.10 Retrieving the Current Disk Drive
The CurDrive function returns the current disk drive as a single-character String containing an upper-
case letter ‘A-Z’ or the character ‘@’:

S$ = CurDrive

Note: This command is available in Terminal programs only.

Access Conditions:

No access conditions are required for this command.

4.5 Creating and Deleting Files

4.5.1 Creating a File
There is no special command to create a new file (but BasicCard files can be defined at compile time –
see 4.11 File Definition Sections). A file is created simply by opening a non-existent file for output,
using the Open command (see 4.6.1 Opening a File). A file can’t be created in this way if mode is
Input or access is Read.

4.5.2 Deleting a File
The Kill command deletes an existing file:

Kill filename

filename The name of the file.

Access Conditions:

Single-application BasicCards: Write access is required, both to the file and to its parent directory.
MultiApplication BasicCard: Delete access is required (but not to the parent directory).

Error Codes:

feFileNotFound The file does not exist.
feNotDataFile The file is a directory, not a data file. Use RmDir to delete directories.
feFileOpen The file can’t be deleted, because it is currently open.

4.6 Opening and Closing Files

4.6.1 Opening a File
In traditional Basic, the programmer has to specify filenum, the number of the open file slot. But in the
BasicCard file system, with open file slots shared between the BasicCard program and the Terminal
program, the programmer can’t always know which file slots are in use. So ZC-Basic allows an
alternative form of the Open command, where the operating system automatically selects a free open
file slot. (This is equivalent to calling FreeFile to select an open file slot, followed by a traditional
Open command.)

Traditional form: Open filename [For mode] [Access access] [lock] As [#] filenum [Len=recordlen]

Alternative form: filenum = Open filename [For mode] [Access access] [lock] [Len=recordlen]

filename The path name of the file to be opened.

mode If mode is Input, Output, or Append, the file is opened for sequential I/O, in which
all write operations take place at the end of the file. If mode is Binary or Random,
write operations can take place anywhere in the file, overwriting existing data:

Input Opens the file for sequential input.
Output Opens the file for sequential output. Existing data is destroyed.

4.6 Opening and Closing Files

63

Append Opens the file for sequential output and sets the file pointer to the end
of the file. Existing data in the file is preserved.

Binary Opens the file for random access by file position, using Get and Put.
Random Opens the file for random access by record number, using Get and Put.

If the mode parameter is absent, its value depends on the access parameter: Input for
Access Read, Output for Access Write, and Append for Access Read Write. If
both mode and access are absent, mode defaults to Input and access defaults to
Read.

access Specifies which types of operations will be executed on the file. It takes the value
Read, Write, or Read Write.

• If mode is Input, then access, if present, must be Read.
• If mode is Output, then access, if present, must be Write.
• If mode is Append, then access, if present, must be Write or Read Write.
• If mode is Binary or Random, then access can take any value; it defaults to

Read Write.

lock For a file in the PC, this parameter specifies whether the file can be opened
simultaneously by other processes. For a file in the BasicCard, it specifies whether
the file can be opened simultaneously from the Terminal program and the BasicCard
program. It also determines whether a file can be opened simultaneously under
different open file slots in the same program. The lock parameter can take the
following values:

Shared Allows simultaneous read and write operations by other processes.
Lock Read Prevents simultaneous read operations by other processes.
Lock Write Prevents simultaneous write operations by other processes.
Lock Read Write Prevents simultaneous access by other processes (the default).

filenum The number of an open file slot, by which read and write operatons will be executed.
In the Terminal program, filenum must be between 1 and 32 inclusive. In the
BasicCard program, filenum must be 1 or 2, unless the number of open file slots has
been configured with the #Files directive (see 3.3.8 Number of Open File Slots).

recordlen Record length or block length.

• If the file is being created, this parameter specifies the size of its data blocks (see
4.2.3 Storage Requirements for more information). If absent (or zero), the data
block size for the new file is 32 bytes. If present, it must be <= 16381.

• If access is Random, this parameter specifies the record length of the file. This
record length must be between 1 and 254 inclusive.

Access Conditions:

If the file already exists, the access conditions required depend on the access parameter: Read, Write,
or Read Write. If the file is being created, Write access to the parent directory is required, and the
Read and Write access conditions on the new file are the same as those of the parent directory.

Error Codes:

feFileNotFound The file does not exist, and could not be created, because:
• the parent directory does not exist; or
• mode is Input; or
• access is Read.

feNotDataFile The file is a directory, not a data file.
feFileOpen (Traditional form only) Open file slot number filenum is already in use.
feTooManyOpenFiles (Alternative form only) There are no more free open file slots.
feTooManyCardFiles (Terminal program only) An attempt was made to open a BasicCard file

from a Terminal program, but there are no more free open file slots in the
BasicCard.

feNameTooLong (BasicCard file system only) The file can’t be created, because its full path
name would be longer than 254 characters.

4. Files and Directories

6464

feRecordTooLong Either access is Random, and recordlen is greater than 254; or the file is
being created, and recordlen is greater than 8191.

feBadParameter Either access is Random, and recordlen is less than 1 (or absent); or the file
is being created, and recordlen is less than 0.

feSharingViolation The file is already open, and the required shared access is not available.

4.6.2 Closing Files
The Close command closes one or more files:

Close [[#] filenum [, [#] filenum , . . .]]

Note: If no parameters are supplied, all open files are closed. (But the P-Code interpreter automatically
closes all files on program exit.) If the BasicCard program closes all open files in this way, even files
that were opened from the Terminal program are closed. In this way, the BasicCard program can
always find a free open file slot when it needs one.

4.7 Writing To Files

4.7.1 Writing to Sequential Files
If a file was opened for writing, with a mode parameter equal to Output or Append, it can be written
to with a Print or Write command. All write operations take place at the end of the file.

The Print command outputs data to a sequential file in human-readable format. It has the same format
as the Print command for displaying data on the screen (see 3.21.1 Screen Output), except for the
initial #filenum parameter:

Print #filenum, [field | separator] [field | seperator] . . .

filenum The filenum parameter to the Open command by which the file was opened.

field Any Byte, Integer, Long, Single, or String expression

separator ‘;’ (semi-colon) Leaves the output column unchanged.
‘,’ (comma) Advances the output column to the next output field (an output

field is 14 characters wide).
Spc(n) Prints n space characters.
Tab(n) Advances the output column to position n.

A new-line character is added at the end, unless the last character is a separator. (So you can stay on the
same output line by adding a semi-colon at the end of the command.)

Note: Use of this statement in an Enhanced BasicCard program with a parameter of type Single will
reduce the amount of user-programmable EEPROM available – see 3.23.5 Single-to-String
Conversion for details.

The Write command writes data to a sequential file, in a binary format that is specific to ZC-Basic. If a
sequence of values is written to a file with Write statements, then the same values can subsequently be
read from the file using ZC-Basic Input statements (see 4.8.1 Reading from Sequential Files).

Write [#] filenum, expression-list

filenum The filenum parameter to the Open command by which the file was opened.

expression-list A list of expressions separated by commas. Expressions can be of numerical, string,
or user-defined type.

Access Conditions:

The file must have been opened with the access parameter equal to Write or Read Write.
Error Codes:

feInvalidMode The file was not opened with mode equal to Output or Append.
feInvalidAccess The file was not opened with access equal to Write or Read Write.

4.8 Reading From Files

65

4.7.2 Writing to Binary and Random Files
The Put command is used to write to files that were opened with mode equal to Binary or Random.
The write operation takes place at the current file position, overwriting any existing data at that
position. After the Put command, the current file position advances to the next character (for Binary
files) or the next record (for Random files):

Put [#] filenum, [pos], data

filenum The filenum parameter to the Open command by which the file was opened.

pos A record number for Random files, and a character position for Binary files. If pos
is not present (“Put [#] filenum, , data”), the variable is written to the current file
position.

data A variable or array element, or a String expression.

Access Conditions:

The file must have been opened with the access parameter equal to Write or Read Write.

Error Codes:

feInvalidMode The file was not opened with mode equal to Binary or Random.
feInvalidAccess The file was not opened with access equal to Write or Read Write.
feSeekError pos is an invalid file position.

4.8 Reading From Files

4.8.1 Reading from Sequential Files
If a file was opened for reading, with a mode parameter equal to Input or Append, it can be read with
a Line Input statement, an Input function, or an Input statement.

Line Input #filenum, X$ Reads a string from the file, up to the next new-line character or end-
of-file, or until 254 characters have been read (the new-line character, if
read, is discarded).

X$ = Input (len, [#] filenum) The Input function reads a given number of characters from the file
into a string.

Input #filenum, variable-list The Input statement reads a list of variables from a file, expecting
them in the format produced by a corresponding Write statement (see
4.7.1 Writing to Sequential Files). This statement can also appear on
the right-hand side of an assignment statement:

n = Input #filenum, variable-list

This returns the number of variables in the list that were successfully
input.

filenum The filenum parameter to the Open command by which the file was opened.

X$ A variable or array element of type String.

len The number of characters to read.

variable-list A list of variables or array elements, separated by commas.

Access Conditions:

The file must have been opened with the access parameter equal to Read or Read Write.

Error Codes:

feInvalidMode The file was not opened with mode equal to Input or Append.
feInvalidAccess The file was not opened with access equal to Read or Read Write.
feReadError The end of file was reached before enough bytes were read.

4. Files and Directories

6666

4.8.2 Reading from Binary and Random Files
The Get command is used to read from files that were opened with mode equal to Binary or Random.
The read operation takes place at the current file position. After the Get command, the current file
position advances to the next character (for Binary files) or the next record (for Random files):

Get [#] filenum, [pos], variable [, len]

filenum The filenum parameter to the Open command by which the file was opened.

pos A record number for Random files, and a character position for Binary files. If pos
is not present (e.g. “Get filenum, , variable”), the read operation takes place at the
current file position.

variable A variable or array element. If this is of type String, it must be followed by the len
parameter; otherwise the len parameter must be absent.

len The number of characters to read, in the case that variable is of type String.

Access Conditions:

The file must have been opened with the access parameter equal to Read or Read Write.

Error Codes:

feInvalidMode The file was not opened with mode equal to Binary or Random.
feInvalidAccess The file was not opened with access equal to Read or Read Write.
feSeekError File position pos does not exist.
feReadError The end of file was reached before enough bytes were read.

4.9 File Locking and Unlocking
The commands in this section are valid only for files in single-application BasicCards.

4.9.1 Setting Read and Write Access Conditions
The Read and Write access conditions of a file or directory are changed with the following commands:

Read Lock filename [Key = k1 [, k2]]
Read Unlock filename

Write Lock filename [Key = k1 [, k2]]
Write Unlock filename

Read Write Lock filename [Key = k1 [, k2]]
Read Write Unlock filename

filename The path name of the file or directory.

k1, k2 The key numbers required to access the file or directory.

• The Lock command with no parameters sets the Read and/or Write access conditions of the
specified file or directory to Forbidden.

• The Lock command with k1 or k2 specified sets the Read and/or Write access conditions of the
specified file or directory to Keyed – the file can’t be read or written from the Terminal program
unless DES encrpytion is currently active.

• The Unlock command sets the Read and/or Write access conditions of the specified file or
directory to Allowed.

Access Conditions:

Write access is required to the file or directory, and to its parent directory.

Error Codes:

feNotRemoteFile filename is not a BasicCard file or directory.

4.9 File Locking and Unlocking

67

4.9.2 Setting and Unlocking a Custom Lock
If a file or directory has a Custom lock, it can’t be read or written from a Terminal program unless the
BasicCard program explicitly unlocks it. This allows access to a file or directory to be subject to any
conditions, such as the presentation of a valid customer PIN number by the Terminal.

To set a Custom lock:

Lock filename

To unlock a Custom lock (BasicCard program only):

Unlock filename

Notes:

1. Once a Custom lock is set, it can never be permanently removed. A Custom lock is for ever.

2. If a Custom lock is unlocked, it can only be accessed from the Terminal program until the card is
reset. After the card is reset, the BasicCard program must unlock the file or directory again before
the Terminal program can access it.

Access Conditions:

For the “Lock filename” command, Write access is required to the file or directory, and to its parent
directory. The “Unlock filename” command is not allowed in a Terminal program, so access conditions
are not relevant.

Error Codes:

feNotRemoteFile filename is not a BasicCard file or directory.

feTooManyCustomLocks The maximum allowed number of Custom locks are already in place.
(The implementation of the Custom lock mechanism in the Enhanced
BasicCard limits the number of locked files to 125.)

4.9.3 Retrieving the Access Conditions on a File or Directory
The access conditions on a file or directory can be obtained with the Get Lock command:

Get Lock filename, LockInfo

filename The path name of the file or directory.

LockInfo A variable of user-defined type or a fixed-length string, at least seven bytes long. A
suitable user-defined type LockInfo is defined in FILEIO.DEF:

Type LockInfo
ReadLock As Byte
WriteLock As Byte
CustomLock As Byte
ReadKey1@, ReadKey2@
WriteKey1@, WriteKey2@

End Type

ReadLock and WriteLock can be liAllowed, liForbidden, liKeyed1, or liKeyed2.
If liKeyed1 or liKeyed2, then ReadKey1@ etc. contain the appropriate key
numbers.

CustomLock can be liAllowed, liUnlocked, or liLocked.

Access Conditions:

Read access is required to the parent directory.

Error Codes:

feNotRemoteFile filename is not a BasicCard file or directory.

Note: Enhanced BasicCard versions ZC3.3, ZC3.4, ZC3.5, and ZC3.6 contain a bug in the file access
code that can result in access being denied when it should be granted. This bug only occurs when a file

4. Files and Directories

6868

has a lock of type liKeyed1. To get round this bug, the compiler automatically converts all such locks
to type liKeyed2, with a dummy key number 255 as the second key.

4.10 Miscellaneous File Operations
filenum = FreeFile Returns a free filenum for use in a traditional Open statement. Returns –1 if

no more file numbers are available, with error code feTooManyOpenFiles.

Seek [#] filenum, pos Sets the file pointer to position pos (of type Long) for the next read or write
operation on file filenum. pos is a record number for files opened with
mode=Random; otherwise it is a byte count. Records and bytes are
numbered from 1.

Note: If the file contains less than pos–1 bytes (or records), Seek fails with
error code feSeekError, unless the file was opened for output in random
access mode (mode=Binary or mode=Random, with Write access
specified). In this case, the file is filled with zeroes to the required length.

Seek ([#] filenum) Returns the read/write position for file filenum, as a Long value.

Len (#filenum) Returns the length of file filenum in bytes, as a Long value.

EOF ([#] filenum) Returns True if the end of file has been reached.

4.11 File Definition Sections
Using File Definition Sections, files and directories can be defined in the source code of the BasicCard
program, to be created by the compiler. Files and directories so defined are downloaded to the
BasicCard together with the BasicCard program itself. A File Definiton Section begins with a Dir
command and ends with the matching End Dir command. It may occur anywhere in a BasicCard
program; it may contain only File Definition statements, not regular ZC-Basic statements. A program
may contain any number of File Definition Sections.

This section describes the statements available in single-application BasicCard programs. File
Definition Sections in a MultiApplication BasicCard program can contain a much richer set of
statements, including Component Definitions and Application Loader commands. See 5.4 Application
Loader Definition Section for more information.

4.11.1 Directory Definition
Dir path

Lock Definitions
File Definitions
Sub-directory Definitions

End Dir

path The path name of the directory. It may be a new directory or an existing
directory.

Lock Definitions Lock and Unlock statements for the path directory. These have the same
format as the statements described in 4.9 File Locking and Unlocking, but
without the filename parameter.

File Definitions Definitions of files contained in the path directory (see 4.11.2 File
Definition).

Sub-directory Definitions Nested Directory Definitions, defining sub-directories of the path
directory. Each nested Directory Definition must end with its own End Dir
statement.

File Definitions and nested Directory Definitions may occur in any order.

4.12 The Definition File FILEIO.DEF

69

4.11.2 File Definition
A File Definition may occur only inside a Directory Definition. It ends with the next File or Dir
statement, or with the End Dir statement of the enclosing Directory Definition.

File filename [Len = blocklen]
Lock Definitions
Data Definitions
Input inputfile

filename The path name of the file.

blocklen The size of the new file’s data blocks (see 4.2.3 Storage Requirements for more
information). If absent, blocklen defaults to 32. The special value Len=0 sets the data
block length to the length of the initial data, so that initially the file occupies exactly
one data block.

Lock Definitions Lock and Unlock statements for the file. These have the same format as the
statements described in 4.9 File Locking and Unlocking, but without the filename
parameter.

Data Definitions The initial data contained in the file. A Data Definition statement looks like this:

expr [As type] [(repeat-count)] [, expr [As type] [(repeat-count)], . . .]

expr Any constant expression of numerical or string type.

type A data type. If absent, it defaults to the smallest data type that can
contain expr. If type is a fixed-length string longer than expr, it is
padded with NULL characters (ASCII zeroes) to the required
length.

(repeat-count) The number of copies of expr to store in the file.

Note: To store a new-line character in the data, use the constant 10.

Input inputfile Copies the contents of file inputfile byte-for-byte into the BasicCard file. The
compiler looks for inputfile in the same directories as it looks for #Include files – see
3.3.1 Source File Inclusion for details.

4.12 The Definition File FILEIO.DEF
Rem FILEIO.DEF
Rem
Rem Declarations for ZC-Basic File I/O

#IfNotDef FileioDefIncluded ' Prevent multiple inclusion
Const FileioDefIncluded = True

#IfDef CompactBasicCard
#Error File I/O is not suported in the Compact BasicCard!
#EndIf

Rem FileError codes

Const feFileOK = 0
Const feInvalidDrive = 1
Const feBadFilename = 2
Const feBadFilenum = 3
Const feFileNotFound = 4
Const feFileNotOpen = 5
Const feOpenError = 6
Const feSeekError = 7
Const feReadError = 8
Const feWriteError = 9
Const feCloseError = 10
Const feInvalidMode = 11

4. Files and Directories

7070

Const feInvalidAccess = 12
Const feRenameError = 13
Const feAccessDenied = 14
Const feSharingViolation = 15
Const feFileAlreadyExists = 16
Const feNotDataFile = 17
Const feNotDirectory = 18
Const feDirNotEmpty = 19
Const feBadFileChain = 20
Const feFileOpen = 21
Const feNameTooLong = 22
Const feRecordTooLong = 23
Const feTooManyOpenFiles = 24
Const feTooManyCardFiles = 25
Const feCommsError = 26
Const feRemoteFile = 27
Const feNotRemoteFile = 28
Const feRecursiveRename = 29
Const feInvalidFromKeyboard = 30
Const feBadParameter = 31
Const feOutOfMemory = 32
Const feNoFileSystem = 33
Const feUnexpectedError = 34
Const feNotImplemented = 35
Const feTooManyCustomLocks = 36
Const feBadKeyFile = 37

Rem File Attribute bits

Const faDirectory = &H0010
Const faCardFile = &H0040

#IfDef TerminalProgram

Const faReadOnly = &H0001
Const faHiddenFile = &H0002
Const faSystemFile = &H0004
Const faArchived = &H0020
Const faNormal = &H0080
Const faTemporary = &H0100

#EndIf

#IfNotDef MultiAppBasicCard

Rem LockInfo defined type, for GET LOCK statement

Type LockInfo
ReadLock As Byte ' liAllowed, liKeyed1, liKeyed2, or liForbidden
WriteLock As Byte ' liAllowed, liKeyed1, liKeyed2, or liForbidden
CustomLock As Byte ' liAllowed, liUnlocked, or liLocked
ReadKey1@, ReadKey2@ ' Key number(s) for ReadLock
WriteKey1@, WriteKey2@ ' Key number(s) for WriteLock

End Type

Rem LockInfo constants

Const liAllowed = 0
Const liKeyed1 = 1
Const liKeyed2 = 2
Const liForbidden = 3
Const liUnlocked = 1
Const liLocked = 2

#EndIf ' MultiAppBasicCard

#EndIf ' FileioDefIncluded

5.1 Components

71

5. The MultiApplication
BasicCard

The MultiApplication BasicCard ZC6.5 is a natural extension of the single-application Professional
BasicCard family. It was designed with two aims in mind:

• to retain the ease of programming that is such an attractive feature of the BasicCard;
• to allow multiple Applications to coexist in a single BasicCard without compromising their

security.

These two aims have been achieved by retaining the ZC-Basic language essentially unchanged, with
the additional concept of the Security Component.

5.1 Components
A Security Component (or Component for short) resembles a file, in that it has a name, resides in a
directory, and can contain data. (In fact, in the MultiApplication BasicCard a file can be thought of as
just another type of Component.)

5.1.1 Component Types
There are five Component types:

• File A data file or directory, just as in the Professional BasicCard.
• ACR Access Control Rule. An ACR defines the conditions by which a Component may

be accessed. It is the only Component type that does not require a name.
• Privilege A Privilege can be granted to an Application (or to the Terminal program) to

allow it access to a Component.
• Flag A Flag can be switched On or Off by an authorised Application, and then queried

by an ACR to verify access conditions.
• Key A Key can be any length up to 255 bytes. When you create a Key, you specify the

uses to which the key can be put (for example External Authentication), and the
cryptographic algorithms that it may be used in (for example AES-128).

5.1.2 Component Properties
A Component name follows the same rules as a file name. Two Components in the same directory may
have the same name if they are of different types. A Component may have Attributes and Data, which
can be read and written separately if the requisite access conditions are satisfied. The format of a
Component’s Attributes and Data depends on its type, and on whether the Component is being created,
written, or read. The various formats are described in the following sections.

Each Component has a unique two-byte Component ID, or CID, that is assigned by the BasicCard
operating system when the Component is created. This ID is required as a parameter in a number of
COMPONENT System Library procedures. This Library provides two procedures, FindComponent
and ComponentName, for obtaining the CID of a Component from its name and vice versa.

The top four bits of a CID determine the type of the Component; the value ((CID Shr 8) And &HF0) is
equal to one of the following constants, defined in the file COMPONNT.DEF:

ctFile &H10
ctACR &H20
ctPrivilege &H30
ctFlag &H40
ctKey &H70

5. The MultiApplication BasicCard

7272

5.1.3 Component Access Control
Access to a Component is controlled according to its Access Control Rule, or ACR. The ACR specifies
the conditions under which the various types of access are allowed. An ACR may be assigned to any
Component; an ACR itself, being a Component, may also be protected with a (different) ACR.

The MultiApplication BasicCard defines five access types:

Read Required to read a Component’s data (or the contents of a directory)
Write Required to write a Component’s data (or to create a Component in a directory)
Execute Required to select an Application
Delete Required to delete a Component, or to write its attributes
Grant Required to grant a Privilege to an Application (or to the Terminal program)

The conditions under which each access type is allowed may be separately specified. See ACR
Definition 5.4.5 for information on how to define an ACR in the source code of an Application; see 7.4
The COMPONENT Library and 5.8.2 ACRs for details on how to create an ACR dynamically at
run-time.

5.2 Applications
From the point of view of the MultiApplication BasicCard, an Application is just an executable file.
But from the point of view of the programmer, an Application will also contain various Components –
data files, keys, ACR’s etc. This section concentrates on the Application as an executable file; for
information on how to bundle an Application with the Components that it needs, see 5.4 Application
Loader Definition Section.

5.2.1 Application Files
An Application file is an executable file, that contains compiled ZC-Basic code for the execution of
commands. It must satisfy certain conditions:

• the first four bytes must be “ZCAF”;
• it must be at least 37 bytes long;
• it must be allocated as a contiguous block of EEPROM.

In addition, if there exists an ACR in the Root directory with the name “Executable”, then the file must
satisfy this ACR.

An Application file contains compiled code for all the commands that the Application supports. It also
contains the Eeprom data used by the Application. Such data is not shareable between Applications; if
different Applications want to share data, they must use the File System. If an Application uses
Eeprom strings or dynamic arrays, then it needs its own Heap, which also resides in the Application
file.

An Application file can be created in one of two ways:

• with an Application filename$ statement in the File Definition Section;
• with the “–OA” compiler command-line option.

The first option embeds the file in an Image file or Debug file for use by the Application Loader; the
second option creates an Application file in the host computer (which can then be loaded “by hand”).

5.2.2 Selecting an Application
When the MultiApplication BasicCard is reset, the operating system looks for an Application file in the
Root directory with the name “DefaultApp”. If such a file exists, it is selected, and becomes the
Current Application. (If no such file exists, then there is initially no Current Application.) The Current
Application is the Application file whose command table is searched when a command is received. If a
match is found, then the code for the matched command is executed.

Subsequently, the Current Application can be changed by selecting a new Application. This is done by
calling the System Library procedure SelectApplication (filename$), either from the Terminal program

5.3 Special Files

73

or from within the card. If an Application selects another Application in this way, then the previous
Application’s code is no longer accessible, so code after the SelectApplication call will not get
executed unless the Application selection fails for some reason.

To select an Application, Execute access is required to the Application file.

5.2.3 Catching Undefined Commands
If the card contains a Default Application (i.e. an executable file “DefaultApp” in the Root directory),
it can be configured to catch undefined commands. This means that if a command is received that is not
supported by the Current Application, then the Default Application’s command table is searched for a
match. If an undefined command is caught by the Default Application in this way, then the Current
Applciation is closed, and the Default Application becomes the new Current Application.

To configure an Application to catch undefined commands:

#Pragma CatchUndefinedCommands

This statement is allowed in any Application, but it has no effect except in the Default Application.

5.2.4 Memory Allocation
The MultiApplication BasicCard has three types of heap for memory allocation:

• The Global Heap is for Files and Components, including Application Files. It occupies the whole
of the available EEPROM in the card.

• Each Application has its own EEPROM Heap, which is an area in the Application File for the
Application’s Eeprom String variables and Eeprom dynamic arrays. Its size can be configured
with the #Heap statement, or in the ZCMDCARD BasicCard Debugger.

• The RAM heap is for an Application’s temporary (Public and Private) String variables and
dynamic arrays. It is cleared on card reset, and whenever an Application is selected. Its size
depends on the sizes of the Application’s stack and fixed-length temporary data; the three regions
RAMHEAP, STACK, and RAMDATA together occupy about 1100 bytes in MultiApplication
BasicCard ZC6.5.

To see the exact lengths of an Application’s EEPROM and RAM heaps, ask the compiler to generate a
Map file. To find out the amount of free memory available in each heap, see 7.10.10 Free Memory.

5.3 Special Files
Certain filenames have special meanings in the MultiApplication BasicCard.

5.3.1 ATR File
If a file with the name “ATR” exists in the Root Directory, its contents are used as the Answer To
Reset, sent by the BasicCard whenever it is reset by the Terminal program. The complete ATR –
protocol definition bytes and Historical Characters – must be included in the file, with a trailing flag
byte. The special syntax

ATR (ATR-Spec)

in a File Definition denotes a string constant that lets you specify the ATR in the same way as the
#Pramga ATR directive – see 3.20.1 Customised ATR for the format of ATR-Spec.

The following example configures a MultiApplication BasicCard to use the T=0 protocol:

#Include ATRList.def

Dir ″\″ ′ Root directory
File ″ATR″ Lock Read: Always ′ Make the file read-only

ATR (T=0)
End Dir

Use this feature with care, as an invalid ATR can make the card unusable. You should at the very least
try out the ATR in a simulated BasicCard before testing it in a real card.

5. The MultiApplication BasicCard

7474

5.3.2 Card ID File
If a file with the name “CardID” exists in the Root Directory, its contents are sent in response to a
GET APPLICATION ID command with P1=&H00, P2=&H02.

5.3.3 Elliptic Curve Domain Parameters
If a file with the name “ECDomainParams” exists in the Root Directory, the Elliptic Curve Domain
Parameters for the EC167 or EC211 System Library are loaded from it automatically whenever the
card is reset. The file may also contain pre-computed data for speeding up Elliptic Curve operations.
Suitable data files are provided in the \BasicCardPro\Lib\Curves directory. For example:

Dir ″\″ ′ Root directory
File ″ECDomainParams″ Lock=Read:Always

#Include \BasicCardPro\Lib\Curves\EC167-4.64
End Dir

This loads the 167-bit Elliptic Curve number 4, with 64 pre-computed points.

5.4 Application Loader Definition Section
An Application will typically require various Components, such as data files and keys, to be created
before it can work properly. Creating these Components, and downloading the Application file, will
often require a complicated sequence of cryptographic operations, such as EXTERNAL
AUTHENTICATE commands. This process can be automated by defining it in the source file of the
Application itself, in an Application Loader Definition Section. The statements in this Section are
saved in the Image file, for interpretation by the Application Loader.

An Application Loader Definition Section is actually an enhanced version of the File Definition
Section described in 4.11 File Definition Sections. (Before reading this Section, you may want to
review File Definition Sections.) It consists of a Directory Definition, that can contain File Definitions,
nested Directory Definitions, Component Definitions, and Loader Commands.

5.4.1 Common Component Attributes
All Components have the following three attributes in common:

Ref=ref Specifies a reference number between 1 and 65535 by which the Component may be
referred to later in the Loader Definition Section. This number must be unique.

Lock=ACR Specifies the ACR of the Component. ACR is either (i) the pathname of a previously
defined ACR; or (ii) the Reference number of a previously defined ACR; or (iii) an
ACR Specification. In case (iii), the Application Loader will create an Anonymous
ACR.

If a Component has no ACR, anybody can read, write, or delete it. This is usually a
bad idea, so every Component definition is required to contain a Lock attribute.
However, you can specifically request an unprotected Component, with Lock=Open.

Create=option where option is one of the following:

Always The Component is always created. If the Component already exists in the
card, the Application Loader signals an error and fails.

Once If the Component doesn’t already exist in the card, it is created. Otherwise
the attributes of the existing Component are checked against the attributes
specified in the Component definition; if they don’t match, the Application
Loader signals an error and fails. No such check is performed on the
Component’s data.

Update If the Component doesn’t already exist in the card, it is created. If the
Component already exists, its attributes and data are updated to match the
attributes specified in the Component definition.

5.4 Application Loader Definition Section

75

Never The Component is never created. If the Component does not already exist in
the card, the Application Loader signals an error and fails. If any attributes
are specified in the Component definition, they are checked against the
attributes of the existing Component; if they don’t match, the Application
Loader signals an error and fails.

If no Create attribute is present in a Component Definition, the default is Create=Update for
directories, and Create=Always for other Component types (but this default can be overridden by
Option Create=option).

These attributes will be referred to as common-attribute in the following paragraphs.

5.4.2 Directory Definition
Dir name$ [common-attribute common-attribute...]

[common-attribute common-attribute... | component-definition | loader-command]
End Dir [Lock=ACR]

component-definition is one of:
Directory Definition
Data File Definition
Application File Definition
ACR Definition
Privilege Definition
Flag Definition
Key Definition

See 5.4.9 Loader Commands for information on loader-command.

The reason that “End Dir Lock=ACR ” may be useful is that it lets you assign a Lock to a Directory
that depends on a Key or an ACR that belongs to the Directory itself. For instance,

Dir ″MyApp″
Key ″MyKey″ Lock=Never Usage=kuExtAuth Algorithm=AlgAes128

″(16-byte secret)″
End Dir Lock = Read:Always; Write:ExtAuth(″MyKey″)

5.4.3 Data File Definition
File name$ [attribute attribute...]

[attribute attribute... | data | Input inputfile]
[attribute attribute... | data | Input inputfile]
...

attribute common-attribute | Len=blocklen
As a special case, Len=0 sets blocklen to the initial length of the file.

data Data to be stored in the file. See 4.11.2 File Definition for details.

Input inputfile Name of file to be included byte-for-byte in the BasicCard file.

5.4.4 Application File Definition
This is a special case of a Data File Definition. It defines a file which is to contain the compiled code
and data of the Application.

Application name$ [attribute attribute...]
[attribute attribute...]
[attribute attribute...]

attribute common-attribute | Len=blocklen

No data statement is allowed. An Application File must be allocated in a single contiguous block,
which the compiler ensures by setting blocklen to the length of the file, as if by Len=0; so although
Len=blocklen is allowed here, it should usually be absent.

5. The MultiApplication BasicCard

7676

5.4.5 ACR Definition
ACR name$ [common-attribute common-attribute...]

[common-attribute common-attribute... | condition]
[common-attribute common-attribute... | condition]
...

condition One of the following: When satisfied
Always Always
Never Never
ACR And ACR And ... And ACR If all ACR’s in the list are satisfied
ACR Or ACR Or ... Or ACR If at least one ACR in the list is satisfied
qualified-list See below
Not ACR If ACR is not satisfied
(ACR) If ACR is satisfied
Write Once If the Component data field is empty
Verify (Key) If the VERIFY command has been

called with Key
ExtAuth (Key) If the EXTERNAL AUTHENTICATE

command has been called with Key
SMEnc (Key) If the START ENCRYPTION command

has been called with Key for an Encryption
algorithm (EAX, AES, DES)

SMMac (Key) If the START ENCRYPTION command
has been called with Key for an Authentication
algorithm (OMAC)

Privilege (Privilege) If the current Application file (or the Terminal
program for external access) has been granted the
given Privilege

Flag (Flag) If the given Flag is set
Signed (Key) If the current Application file was signed using

Key, in an AUTHENTICATE FILE command
or during Secure Transport

Application (File) If File is the current Application
SecTrans (Key) If Secure Transport with Key is active

qualified-list has the form

access-type-list : ACR ; access-type-list : ACR ; ... [access-type-list :] ACR

where access-type-list is a list of access types (Read, Write, Execute, Delete, Grant) separated by
commas. If the last ACR in the list is not preceded by an access-type-list, it applies to all access types
not previously mentioned. If every ACR is preceded by an access-type-list, then access types not
occurring in the list are forbidden.

The corresponding list in 5.8.2 ACRs gives the binary data format of these ACR types.

The condition (i.e. the meaning of the ACR) must occur on a single line, except that multiple access-
type-list specifications may be split into separate lines. For example:

ACR ″MyACR″ Lock=Never
Read, Execute: Always
Write: Verify (″MyPassword″)
ExternalAuthenticate (″MyKey″)

Here, ExternalAuthenticate (“MyKey”) becomes the access condition for the unspecified access
types (Delete and Grant).

5.4 Application Loader Definition Section

77

5.4.6 Privilege Definition
A Privilege has no special attributes, and no data:

Privilege name$ [common-attribute common-attribute...]
[common-attribute common-attribute...]

5.4.7 Flag Definition
Flag name$ [=value] [attribute attribute...]

[attribute attribute...]

value The initial value of the Flag (the Flag will be set if value is non-zero).
attribute common-attribute | SetAttr=bitmask

The bitmask values are defined in 5.8.4 Flags.

5.4.8 Key Definition
Key name$ [(error-counter[, reset-value])] [attribute attribute...]

[attribute attribute... | data]
[attribute attribute... | data]
...

error-counter The initial value of the Key’s Error Counter.

reset-value The reset value of the Key’s Error Counter. If absent, it is set equal to error-counter.

attribute common-attribute | Usage=usage-list | Algorithm=algorithm-list

data The value of the Key. This is a Binary Data Field, which can take the following
forms:

• a String constant

• LCIndexedKey (LookupTime, Index)
The Key takes its value from a Declare Key Index statement (see 3.17.3 Key
Declaration). LookupTime is one of the values ltCompileTime or ltLoadTime
defined in COMPONNT.DEF. If ltCompileTime, the Key is evaluated by the
compiler from a Declare Key statement in the source code; if ltLoadTime, the
Key is evaluated by the Application Loader from a Declare Key statement read
in an LCReadKeyFile command (see 5.4.9 Loader Commands).

• LCSerialNumber (LookupTime)
The Key takes the value of the 8-byte Serial Number of the card. LookupTime is
one of the values ltCompileTime or ltLoadTime defined in COMPONNT.DEF.
If ltCompileTime, the compiler uses the Serial Number defined in the
command-line parameter –Nxxxxxxxxxxxxxxxx, where each x is a hexadecimal
digit. If ltLoadTime, the Application Loader asks the card for its Serial Number
via the GET APPLICATION ID command.
Notes
1. This feature is expected to be more useful as the Seed parameter to

LCBuildKey than as a way of assigning a card’s Serial Number to a Key.
See 5.5 Secure Transport for an example.

2. A simulated BasicCard has the Serial Number 0123456789ABCDEF. The
ZCMDCARD BasicCard debugger uses this value when compiling a
MultiApplication BasicCard program. To specify a different value, the
ZCMBASIC command-line compiler must be used.

• LCBuildKey (Key, Len, Seed)
This function generates Len bytes of data from Key and Seed, using the SHA-1
Secure Hash Algorithm. The Seed parameter is itself a Binary Data Field, which
may take any of the forms defined in this paragraph. For example, if Key is a
Master Key known only to the card issuer, and Seed is the card’s Serial Number,

5. The MultiApplication BasicCard

7878

then this function can be used to generate card-specific keys, for Secure
Transport and other uses. See 5.5 Secure Transport for an example of this.

• LCKey (Key)
This function returns the value of Key.

• LCPublicKey (PrivateKey, Algorithm)
The Key takes the value of the Public Key corresponding to the given
PrivateKey. The PrivateKey parameter is a Binary Data Field, which the
compiler must be able to evaluate (i.e. LookupTime=ltLoadTime is not
allowed). Algorithm must be AlgEC167 or AlgEC211; the resulting Public Key
will be 21 (resp. 27) bytes long. PrivateKey can be any length, although it should
usually consist of 21 (resp. 27) random bytes.
The PrivateKey parameter is not stored in the Image file.

Multiple data statements are allowed, as long as they can all be evaluated at compile
time; the values are concatenated.

usage-list is a list of Key Usage values, separated by commas. The values specify the uses to which the
key may be put. In general, for maximum security, it is advisable to avoid using a given key for more
than one purpose. The following Key Usage values are defined in COMPONNT.DEF:

Const kuVerify = 1 Password Verification
Const kuExtAuth = 2 External Authentication
Const kuSMEnc = 3 Secure Messaging with Encryption algorithm
Const kuSMMac = 4 Secure Messaging with Authentication algorithm
Const kuSign = 5 Digital Signature and File Authentication
Const kuIntAuth = 6 Internal Authentication
Const kuSecTrans = 7 Secure Transport of Files and Keys

algorithm-list is a list of Algorithm IDs, separated by commas. The IDs specify the cryptographic
algorithms that the key may be used with. The following Algorithm IDs, defined in AlgID.DEF, are
accepted:

Const AlgSingleDesCrc = &H23
Const AlgTripleDesEDE2Crc = &H24
Const AlgTripleDesEDE3Crc = &H25

Const AlgAes128 = &H31
Const AlgAes192 = &H32
Const AlgAes256 = &H33

Const AlgEaxAes128 = &H41
Const AlgEaxAes192 = &H42
Const AlgEaxAes256 = &H43

Const AlgOmacAes128 = &H81
Const AlgOmacAes192 = &H82
Const AlgOmacAes256 = &H83

Const AlgEC167 = &HC1
Const AlgEC211 = &HC2

5.4.9 Loader Commands
Loader Commands are directives to the Application Loader. To use Loader Commands:

#Include LOADCOMM.DEF

The ZC-Basic compiler embeds the Loader Commands in the Image file. The Application Loader reads
them from the Image file and executes them, in the order that they occur in the Application Loader
Definition Section. They will typically be interleaved with Component Definitions. In the list of Loader
Commands given below, the parameters take the following form:

5.4 Application Loader Definition Section

79

File A filename or File Reference number

Key, Privilege Either a constant string containing the pathname of a previously defined Component,
or a constant integer which is the Reference number of a previously defined
Component. (Reference numbers are assigned with the Ref=ref attribute.)

Algorithm A cryptographic algorithm ID. A list of algorithm IDs can be found in the previous
section.

LCReadKeyFile (filename$)
Read the Key file into the Key() array. The Key file must be present on the host computer
when the Application Loader runs. This is useful in conjunction with the index parameter in a
Key Definition – see 5.4.8 Key Definition.

LCEC167SetCurve (DomainParams As String*64)
DomainParams is a string constant that contains a copy of an EC167DomainParams
structure. File EC167CRV.STR in the Lib\Curves directory contains string constants
EC167Curve1String through EC167Curve5String for the five pre-defined Elliptic Curves.
This procedure must be called before using 167-bit Elliptic Curve operations in the
Application Loader Section.

LCEC211SetCurve (DomainParams As String*82)
DomainParams is a string constant that contains a copy of an EC211DomainParams
structure. File EC211CRV.STR in the Lib\Curves directory contains string constants
EC211Curve1String through EC211Curve5String for the five pre-defined Elliptic Curves.
This procedure must be called before using 211-bit Elliptic Curve operations in the
Application Loader Section.

LCStartSecureTransport (Key, Algorithm)
Start Secure Transport of Files and Keys, using the given Key and Algorithm. All Files and
Keys will be stored in the Image File in encrypted form, for decryption by the BasicCard. This
deactivates the current Application in the card, and disables Application selection until
LCEndSecureTransport() is called. See 5.5 Secure Transport and 8.7.34 The SECURE
TRANSPORT Command for more information.
Valid algorithms: AlgEaxAes128, AlgEaxAes192, AlgEaxAes256.

LCEndSecureTransport()
End Secure Transport of Files and Keys.

LCStartEncryption (Key, Algorithm)
Call the START ENCRYPTION command (see 8.7.11) with the given Key and Algorithm.
All algorithms from AlgSingleDesCrc (&H23) to AlgOmacAes256 (&H83) are valid.

LCEndEncryption()
Call the END ENCRYPTION command (see 8.7.12).

LCExternalAuthenticate (Key, Algorithm)
Call the EXTERNAL AUTHENTICATE command (see 8.7.17) with the given Key and
Algorithm.
Valid algorithms: AlgSingleDesCrc, AlgTripleDesEDE2Crc, AlgTripleDesEDE3Crc,
AlgAes128, AlgAes192, AlgAes256.

LCInternalAuthenticate (Key, Algorithm)
Call the INTERNAL AUTHENTICATE command (see 8.7.18) with the given Key and
Algorithm.
Valid algorithms: AlgSingleDesCrc, AlgTripleDesEDE2Crc, AlgTripleDesEDE3Crc,
AlgAes128, AlgAes192, AlgAes256.

LCVerify (Key)
Call the VERIFY command (see 8.7.19) with the given Key.

LCGrantPrivilege (Privilege, File)
Call the GRANT PRIVILEGE command (see 8.7.30) with the given Privilege and File.

5. The MultiApplication BasicCard

8080

LCAuthenticateFile (Key, Algorithm, [PrivateKey,] File)
Call the AUTHENTICATE FILE command with the given parameters. The signature is
computed at compile time, so the Key and the contents of the File must be available to the
compiler. The PrivateKey parameter is required if Algorithm is AlgEC167 or AlgEC211. See
5.7 File Authentication and 8.7.31The AUTHENTICATE FILE Command for more
information.
Valid algorithms: AlgOmacAes128, AlgOmacAes192, AlgOmacAes256, AlgEC167,
AlgEC211.

LCCheckSerialNumber ()
Check that the card’s Serial Number matches that specified in the compiler’s –N parameter. If
not, the Application Loader issues an appropriate error message and fails. The Application
Loader uses the GET APPLICATION ID command (see 8.7.10) to read the card’s serial
number.

5.5 Secure Transport
The MultiApplication BasicCard allows an Application to be loaded at any time. To control the
conditions under which this happens, you can set access conditions on the directories of the card, using
ACR’s. And to ensure the secrecy of the Files and Keys that are loaded, you can use the Secure
Transport mechanism. This encrypts the data fields of all Files and Keys in the Image file, using a Key
known only to the card and to the issuer. The Application Loader does not need to know this Key, so
the encrypted data remains secret.

5.5.1 An Example
The Secure Transport Key will typically be loaded into the card by the card issuer, at card initialisation
time. This is a secure environment, so the data need not be encrypted. The following example creates a
Secure Transport Key in the card that depends on the card’s Serial Number. First, generate a Master
Key file using the KEYGEN utility (see 6.9.4 The Key Generator KEYGEN.EXE). For example:

KEYGEN –K100(16) MK.DAT

Next, use the Master Key to build a Secure Transport Key for each card:

#Include COMPONNT.DEF
#Include LOADCOMM.DEF

#Include MK.DAT

Dir ″\″ Create=Update

Key ″Master Key″ Create=Never
LCIndexedKey (ltCompileTime, 100)

Key ″Secure Transport Key″ Lock=Never
Usage=kuSecTrans Algorithm=AlgEaxAes128
LCBuildKey (″Master Key″, 16, LCSerialNumber (ltLoadTime))

End Dir Lock Read:Always; Write:SecTrans(″Secure Transport Key″)
Key “Master Key” is needed by the Application Loader, and so it must be stored (unencrypted) in the
Image file. As this Image file is only used at card initialisation time, this does not compromise the
Key’s security. Key “Secure Transport Key” is calculated by the Application Loader, using the Serial
Number that it reads from the card; only this Key is loaded into the card.

(Instead of including MK.DAT at compile time, it could have been read at load time, as follows:

Call LCReadKeyFile (″MK.DAT″)
Key ″Master Key″ Create=Never

LCIndexedKey (ltLoadTime, 100)

In a secure environment, there is nothing to choose between these two methods.)

5.6 Secure Messaging

81

Create=Update is required in the Directory Definition, because we change the ACR attribute of the
root directory to Read:Always; Write:SecTrans("Secure Transport Key"). This ensures that only
Applications compiled with Secure Transport enabled can be loaded into the card.

Now the card contains a Secure Transport Key, and can be issued to customers. To load an Application
into the card at a later time (and in a different place):

#Include COMPONNT.DEF
#Include LOADCOMM.DEF

#Include MK.DAT

Dir ″\″
Key ″Master Key″ Create=Never

LCIndexedKey (ltCompileTime, 100)

Key ″Secure Transport Key″ Ref=1 Create=Never
LCBuildKey (″Master Key″, 16,_

LCSerialNumber (ltCompileTime))

Call LCStartSecureTransport (1, AlgEaxAes128)

Rem Load the Application here...

Call LCEndSecureTransport()

End Dir

This must be compiled with the card’s Serial Number specified in the command line, with the
parameter –Nxxxxxxxxxxxxxxxx. (The card’s Serial Number is an 8-byte string, returned by the
command GET APPLICATION ID with P2=3 – see 8.7.10 The GET APPLICATION ID
Command.) Neither of the Keys is stored in the Image file. The Application’s Files and Keys are
stored in encrypted form, using a Key known only to the card issuer and the BasicCard, so the Image
file can safely be sent to the customer, for example as an e-mail attachment.

5.5.2 Automatic File Authentication
The encryption algorithm used, EAX, also authenticates the data it encrypts. So the Secure Transport
mechanism can be used to authenticate Files “for free”. To do this, simply set

Usage = kuSecTrans, kuSign

when the Secure Transport Key is created. Then all downloaded Files will automatically be flagged as
Signed by the Secure Transport Key. This means that the Access Control Rule

Signed (“Secure Transport Key”)

will be satisfied whenever the signed Application is running.

5.6 Secure Messaging
Secure Messaging is the encryption or authentication of commands and responses. This is handled in
the BasicCard family by the START ENCRYPTION and END ENCRYPTION commands. The
MultiApplication BasicCard is no exception, but the command parameters are slightly different, due to
the different way that Keys are represented. In a Terminal program or a single-application BasicCard, a
Key is indexed by a key number from 0 to 255, and Secure Messaging is activated by

Call StartEncryption (P1=key, P2=algorithm, Rnd)

if the encryption algorithm requires four bytes of initialisation data, or

Call ProEncryption (P1=key, P2=algorithm, Rnd, Rnd)

if eight bytes are required (for Triple DES and AES-based algorithms). The Terminal program
interpreter has access to the key, and automatically activates Secure Messaging when it sees the
START ENCRYPTION command.

In the MultiApplication BasicCard, the following steps are required:

5. The MultiApplication BasicCard

8282

• find the CID of the Key from its name, using FindComponent;
• tell the Terminal program interpreter the value of the Key with the given CID, using

AddIndexedKey;
• call the START ENCRYPTION command.

The following procedure, defined in COMMANDS.DEF, performs the necessary steps:

Sub SMEncryptionByName (KeyName$, KeyVal$, Algorithm@)

If you know the CID, you can save time by calling the following procedure:

Sub SMEncryptionByCID (KeyCID%, KeyVal$, Algorithm@)

The source code for these procedures is available in COMMANDS.DEF.

5.7 File Authentication
This section illustrates File Authentication using OMAC Message Authentication and EC211 Elliptic
Curve cryptography. It shows how to configure a card so that only authenticated files can be loaded as
Applications, and how to authenticate an Application so that it can be loaded in such a card. The source
files described here are available in the BasicCardPro\Examples\AuthFile directory.

OMAC authentication is faster than Elliptic Curve authentication, but Elliptic Curve authentication is
more secure, as it doesn’t require the Authentication Key to be stored in the BasicCard.

See 5.5.2 Automatic File Authentication for another method of File Authentication (which, like
OMAC, requires the Authentication Key to be stored in the BasicCard).

5.7.1 File Authentication Using OMAC
Suppose we decide to use the algorithm AlgOmacAes128 (OMAC with AES-128) to authenticate
files. For this we need a 16-byte Authentication Key, which we can generate with the KEYGEN utility:

KeyGen –K1(16) OmacKey

This creates a file OmacKey.bas containing a 16-byte Key. The following source code in
OmacInit.bas configures the BasicCard so that only files authenticated with this Key can be loaded:

Option Explicit
#Include COMPONNT.DEF
#Include OmacKey.bas

Dir ″\″
Key ″Authentication Key″ Lock=Never

Usage=kuSign Algorithm=AlgOmacAes128
LCIndexedKey (ltCompileTime, 1) ′ Key(1) from OmacKey.bas

ACR ″Executable″ Lock=Read:Always ′ Special name ″Executable″
Signed (″Authentication Key″)

End Dir

We can compile this and load it into a simulated BasicCard file OmacCard.img with the following
commands:

ZCMBasic –CM –OI OmacInit
ZCMSim –C\BasicCardPro\MultiApp\ZC65_A.mcf –AOmacInit –D –WCOmacCard

Now we can create and authenticate a simple Application in OmacApp.bas:

Option Explicit
#Include COMPONNT.DEF
#Include LOADCOMM.DEF
#Include OmacKey.bas

5.7 File Authentication

83

Dir ″\″
Key ″Authentication Key″ Ref=100 Create=Never

LCIndexedKey (ltCompileTime, 1)

Application ″MyApp″ ′ No Lock until file is authenticated
Call LCAuthenticateFile (100, AlgOmacAes128, ″MyApp″)
Application ″MyApp″ Create=Update Lock=Execute:Always

End Dir

Command &HA0 &H00 TestMyApp (S$)
S$ = ″TestMyApp″

End Command

The Application Loader doesn’t need to know the value of “Authentication Key”, so it is not stored in
the Image file. (The compiler issues a warning whenever a Key that is used for File Authentication is
also stored in the Image file.) Now we compile this Application and load it into OmacCard.img:

ZCMBasic –CM –OI OmacApp
ZCMSim –COmacCard –AOmacApp –D –WC

To check that everything has worked, the following Terminal program AppTest.bas selects
Application “MyApp” and calls its command:

Option Explicit
#Include COMMERR.DEF

Declare Command &HA0 &H00 TestMyApp (S$)

ResetCard : Call CheckSW1SW2()
Call SelectApplication (″MyApp″) : Call CheckSW1SW2()

Private S$
Call TestMyApp (S$) : Call CheckSW1SW2()
Print S$ ′ This shoud print ″TestMyApp″

To compile and run this program:

ZCMBasic –OI AppTest
ZCMSim –COmacCard AppTest

This should print:

TestMyApp

5.7.2 File Authentication Using Elliptic Curve Cryptography
The MultiApplication BasicCard can authenticate Files with Elliptic Curve algorithms EC167 and
EC211. It uses data hashing algorithm SHA-1 with EC167, and SHA-256 with EC211.

This section illustrates File Authentication using the Elliptic Curve algorithm EC211. ZeitControl
provides five Elliptic Curves for use with this algorithm; we use Curve 3 for this project. First we use
the KEYGEN utility to generate a 27-byte Key, for use as our Private Key:

KeyGen –K1(27) EC211Key

This creates a file EC211Key.bas containing a 27-byte Key. The following source code in
EC211Init.bas configures the BasicCard so that only files authenticated with this Key can be loaded.
The file “ECDomainParams” must be created in the BasicCard; this loads Curve 3 automatically
whenever the card is reset:

Option Explicit
#Include COMPONNT.DEF
#Include LOADCOMM.DEF

#Include Curves\EC211Crv.Str
#Include EC211Key.Bas ′ EC211 Private Key

5. The MultiApplication BasicCard

8484

Dir ″\″
File ″ECDomainParams″ Lock=Read:Always

Rem Use Curve 3, with 128 pre-computed points:
#Include Curves\EC211-3.128

Rem Let the compiler know the ECDomainParameters:
Call LCEC211SetCurve (EC211Curve3String)

Rem The BasicCard needs the Public Key corresponding to
Rem the Private Key (Key(1)) in ECKey.bas:
Key ″ECPublicKey″ Lock=Read:Always

Usage=kuSign Algorithm=AlgEC211
LCPublicKey (LCIndexedKey (ltCompileTime, 1), AlgEC211)

ACR ″Executable″ Lock=Read:Always ′ Special name ″Executable″
Signed (″ECPublicKey″)

End Dir

Only the Public Key is stored in the BasicCard; the Private Key is not required.

We can compile this and load it into a simulated BasicCard file EC211Card.img with the following
commands:

ZCMBasic –CM –OI EC211Init
ZCMSim –C\BasicCardPro\MultiApp\ZC65_A.mcf –AEC211Init –D –WCEC211Card

Now we can create and authenticate a simple Application in EC211App.bas:

Option Explicit
#Include COMPONNT.DEF
#Include LOADCOMM.DEF

#Include Curves\EC211Crv.Str
#Include EC211Key.Bas ′ EC211 Private Key

Dir ″\″
Call LCEC211SetCurve (EC211Curve3String)

Key ″ECPublicKey″ Create=Never

Application ″MyApp″ ′ No Lock until file is authenticated
Call LCAuthenticateFile (″ECPublicKey″, AlgEC211,_

LCIndexedKey (ltCompileTime, 1), ″MyApp″)
Application ″MyApp″ Create=Update Lock=Execute:Always

End Dir

Command &HA0 &H00 TestMyApp (S$)
S$ = ″TestMyApp″

End Command

No Keys are stored in the Image file; the Private Key is only required by the compiler, and the Public
Key is assumed to have already been created in the BasicCard. Now we compile this Application and
load it into EC211Card.img:

ZCMBasic –CM –OI EC211App
ZCMSim –CEC211Card –AEC211App –D –WC

To check that everything has worked, use the AppTest program described in the previous section:

ZCMSim –CEC211Card AppTest

As before, this should print:

TestMyApp

The directory BasicCardPro\Examples\AuthFile also contains files EC167Key.bas,
EC167Init.bas, and EC167App.bas, to illustrate File Authentication using the EC167 algorithm.

5.8 Component Details

85

5.8 Component Details
To use the procedures in the COMPONENT System Library (described in 7.4 The COMPONENT
Library), you need to know the internal structure of each Component type. This section describes
these structures. Every Component type has attributes, and some Component types have data as well.
The format of a Component’s attributes depends not only on the Component type, but on whether the
attributes are being created, written, or read. All the structures described below are declared as user-
defined types in COMPONNT.DEF.

In the COMPONENT System Library, attributes are read and written as String parameters. The
following example shows how to pass a user-defined type in a String parameter:

#Include COMPONNT.DEF

Function AcrType (CID%) As Byte

Rem User-defined type for reading the attributes of an ACR:
Private Attr As AcrReadAttributes

Rem Declare a fixed-length string at the same address:
Private Attr$ As String*Len(Attr) At Attr

Rem Read the attributes into Attr$
Attr$ = ReadComponentAttr (CID%)

Rem Now the attributes can be accessed as structure members:
AcrType = Attr.AcrType@

End Function

5.8.1 Files
In the MultiApplication BasicCard, a File is just a Component of type ctFile. It can be accessed as a
File, via the standard ZC-Basic file commands, or as a Component, via the COMPONENT System
Library procedures.

File Attribute Format

The Attribute format depends on whether the Component is a Directory or a Data file.

For CreateComponent:

Offset Length Directory Data file
0 2 ACRCID% ACRCID% CID of Component’s ACR
2 1 Attributes@ Attributes@ &H80 for Directory; 0 for Data file
3 2 BlockLen% Length of allocation block

For WriteComponentAttr:

Offset Length Directory Data file
0 2 ACRCID% ACRCID% CID of Component’s ACR

For ReadComponentAttr:

Offset Length Directory Data file
0 2 ACRCID% ACRCID% CID of Component’s ACR
2 1 Attributes@ Attributes@ &H80 for Directory; 0 for Data file
3 2 BlockLen% Length of allocation block
5 2 FileLen% Length of file

Six corresponding user-defined types can be found in COMPONNT.DEF:

DirectoryCreateAttributes DataFileCreateAttributes
DirectoryWriteAttributes DataFileWriteAttributes
DirectoryReadAttributes DataFileReadAttributes

File Data Format

File data can not be read or written using procedures from the Component System Library. The
standard File I/O commands must be used instead.

5. The MultiApplication BasicCard

8686

5.8.2 ACRs
An Access Control Rule, or ACR, defines the access conditions for a Component. An ACR may have a
name, or it may be anonymous.

Anonymous ACRs allow complex ACRs to be built in a single statement; the compiler and the
Application Loader construct the necessary sub-components automatically. For example, the statement

File “ABC” Lock = Read: Always; Write: Write Once; Delete: Verify (“MyPassword”)

in a Component Definition Section causes the following five Anonymous ACRs to be created:

Always
Write Once
Verify (“MyPassword”)
Read: Always; Write: Write Once; Delete: Verify (“MyPassword”)

When an Anonymous ACR is created, the BasicCard looks for a match among its existing Anonymous
ACRs. If a match is found, the existing ACR is used. This arrangement relies on the fact that an
Anonymous ACR can never be overwritten or deleted. An Anonymous ACR must have an ACRCID%
equal to zero.

ACR Attribute Format

For CreateComponent and ReadComponentAttr:

Offset Length
0 2 ACRCID% CID of Component’s ACR
2 1 AcrType@ As defined in ACR Data Format below

For WriteComponentAttr:

Offset Length
0 2 ACRCID% CID of Component’s ACR

Three corresponding user-defined types can be found in COMPONNT.DEF:

AcrCreateAttributes
AcrReadAttributes
AcrWriteAttributes

ACR Data Format

The format of ACR data depends on the ACR type, which is one of the following:

Type Name Data When satisfied
&H01 acrAlways None Always
&H02 acrNever None Never
&H03 acrAnd ACR, ACR,... If all ACR’s in the list are satisfied
&H04 acrOr ACR, ACR,... If at least one ACR in the list is satisfied
&H05 acrQualified (AT,ACR), (AT,ACR),... If the ACR corresponding to the current Access

Type AT is satisfied
&H06 acrNot ACR If ACR is not satisfied
&H07 acrIndirect ACR If ACR is satisfied
&H10 acrWriteOnce None If the Component data field is empty
&H20 acrVerify Key If the VERIFY command has been

called with Key
&H30 acrExtAuth Key If the EXTERNAL AUTHENTICATE

command has been called with Key
&H40 acrSMEnc Key If the START ENCRYPTION command

has been called with Key for an Encryption
algorithm (EAX, AES, DES)

&H50 acrSMMac Key If the START ENCRYPTION command
has been called with Key for an Authentication
algorithm (OMAC)

5.8 Component Details

87

&H60 acrPrivilege Privilege If the current Application file (or the Terminal
program for external access) has been granted the
given Privilege

&H70 acrFlag Flag If the given Flag is set
&H80 acrSigned Key If the current Application file was signed using

Key, in an AUTHENTICATE FILE command
or during Secure Transport

&H90 acrApp File If File is the current Application
&HA0 acrSecTrans Key If Secure Transport with Key is active

ACR, Key, Privilege, and Flag parameters are two-byte CID’s. AT is a one-byte Access Type from the
following list (the constants are defined in COMPONNT.DEF):

&H01 atRead
&H02 atWrite
&H04 atExecute
&H08 atDelete
&H10 atGrant

The corresponding list in 5.4.5 ACR Definition gives the definition syntax of these ACR types, for use
in the Application Loader Definition Section.

5.8.3 Privileges
A Privilege is essentially just a name. It has no data, and its only attribute is its ACRCID%. The
corresponding user-defined type PrivilegeAttributes can be found in COMPONNT.DEF.

5.8.4 Flags
A Flag can be either On or Off, and its value can be tested as an access condition in an ACR.

Flag Attribute Format

By default, a flag is cleared whenever the card is reset. The following attribute bits are defined in
COMPONNT.DEF:

&H02 faPermanent The flag retains its value when the card is reset or powered down.
&H04 faClearOnNewApp The flag is cleared whenever an Application is selected.
&H08 faClearOnCommand The flag is cleared whenever the card receives a command.

A Flag’s attributes are the same for all library procedures:

Offset Length
0 2 ACRCID% CID of Flag’s ACR
2 1 Attributes@ The Flag’s attribute bits

The corresponding user-defined type FlagAttributes can be found in COMPONNT.DEF.

Flag Data Format

The value of the Flag is stored in bit 0 of the Attributes@ byte, but it can also be read or written as
data, as follows:

• CreateComponent The data$ parameter must be empty; the initial value of the Flag is
taken from the Attributes@ byte.

• WriteComponentAttr The new value of the Flag is taken from the Attributes@ byte.
• ReadComponentAttr The value of the Flag is not returned.
• WriteComponentData The data$ parameter contains a single byte. The Flag is set if this

byte is non-zero.
• ReadComponentData A string of length 1 is returned, equal to Chr$(0) or Chr$(1).

5. The MultiApplication BasicCard

8888

5.8.5 Keys
A Key has three configurable attributes in addition to its ACRCID%: a Key Usage Mask, an
Algorithm Mask, and an Error Counter.

Key Usage Mask

In general, a cryptographic Key should only be used for a single purpose. In the MultiApplication
BasicCard, each Key has a Key Usage Mask that specifies what the key can be used for. The Key
Usage values kuVerify etc., defined in COMPONNT.DEF, have corresponding bitmasks, as follows:

Constant Value Mask Usage
kuVerify 1 &H0001 VERIFY command
kuExtAuth 2 &H0002 EXTERNAL AUTHENTICATE command
kuSMEnc 3 &H0004 START ENCRYPTION with Encryption algorithm
kuSMMac 4 &H0008 START ENCRYPTION with Authentication algorithm
kuSign 5 &H0010 AUTHENTICATE FILE
kuIntAuth 6 &H0020 INTERNAL AUTHENTICATE command
kuSecTrans 7 &H0040 SECURE TRANSPORT command

Algorithm Mask

As well as the Key Usage mask, a Key has an Algorithm Mask that specifies the cryptographic
algorithms that the key may be used for. The Algorithm IDs defined in AlgID.DEF have corresponding
bitmasks, as follows:

Algorithm ID Value Mask Algorithm
AlgSingleDesCrc &H23 &H0001 Single DES with 8-byte key
AlgTripleDesEDE2Crc &H24 &H0002 Triple DES-EDE2 with 16-byte key
AlgTripleDesEDE3Crc &H25 &H2000 Triple DES-EDE3 with 24-byte key
AlgAes128 &H31 &H0004 AES with 16-byte key
AlgAes192 &H32 &H0008 AES with 24-byte key
AlgAes256 &H33 &H0010 AES with 32-byte key
AlgEaxAes128 &H41 &H0020 EAX using AES with 16-byte key
AlgEaxAes192 &H42 &H0040 EAX using AES with 24-byte key
AlgEaxAes256 &H43 &H0080 EAX using AES with 32-byte key
AlgOmacAes128 &H81 &H0100 OMAC using AES with 16-byte key
AlgOmacAes192 &H82 &H0200 OMAC using AES with 24-byte key
AlgOmacAes256 &H83 &H0400 OMAC using AES with 32-byte key
AlgEC167 &HC1 &H0800 EC-167 Elliptic Curve Cryptography
AlgEC211 &HC2 &H1000 EC-211 Elliptic Curve Cryptography

Error Counter

To prevent attempts to guess the value of a Key by repetition, a Key should normally be configured
with an Error Counter. This is a counter that is decremented by one each time the Key is unsuccessfully
used in a cryptographic algorithm. If the counter reaches zero, the Key is disabled until it is reinstated
via a WriteComponentAttr command. Whenever the Key is successfully used, its Error Counter is
reset to the configured value; so the initial value of the Error Counter is the number of consecutive
unsuccessful uses that are allowed before the Key is disabled.

If this Error Counter mechanism is not required, set ECResetValue@ to zero, and the Key will never
be disabled.

Key Attribute Format

The format of the attr$ parameter is the same for all library procedures:

Offset Length
0 2 ACRCID% CID of Key’s ACR
2 2 UsageMask% The Key Usage Mask
4 2 AlgorithmMask% The Algorithm Mask
6 1 ErrorCounter@ The current value of the Error Counter
7 1 ECResetValue@ The Error Counter value after successful use

The corresponding user-defined type KeyAttributes can be found in COMPONNT.DEF.

89

6. Support Software
This document describes Version 5.08 of the ZeitControl MultiDebugger software support package. All
the software described in this chapter is available free of charge from our web site at
www.BasicCard.com.

6.1 Hardware Requirements
No special hardware is required to develop programs in ZC-Basic – the support software can simulate
the BasicCard inside your PC, so you can compile and test software on any system running Windows®

98 or later.

Once the software is written and tested, you will need a PC/SC-compatible card reader, and one or
more BasicCards. ZeitControl offers a selection of card readers – see our web site for details. A
development kit containing CyberMouse reader, BasicCards, and printed documentation is available
from ZeitControl – contact us at Sales@ZeitControl.de.

6.2 Installation
Please obtain the latest version of our development software before installing it. The latest version is
available free of charge from our web site at www.BasicCard.com. Installation instructions can be
found there.

To install the BasicCard software from the CD, run the program BasicPro\Setup.exe. The
software is installed in the directory C:\BasicCardPro unless you specify a different destination.

6.3 File Types
To use the development software effectively, it helps to have a clear idea of the roles played by the
different types of files used by the system. We can arrange the files in a three-level hierarchy: Project
Files, Program Files, and Source Files. There is a corresponding software hierarchy: development
environment ZCPDE; debuggers ZCMDTERM/ZCMDCARD; and compiler ZCMBASIC:

Level 1: Project Files

*.ZCP

ZCPDE.EXE

Project Files

ZeitControl Professional Development Environment

Level 2: Program Files

*.ZCT

ZCMDTERM.EXE

Terminal Program Files

ZeitControl Terminal Program Debugger

*.ZCC

ZCMDCARD.EXE

BasicCard Program Files

ZeitControl BasicCard Program Debugger

Level 3: Source Files
*.BAS
*.DEF

ZCMBASIC.EXE

ZC-Basic Source Files
ZC-Basic Definition Files
ZeitControl ZC-Basic Compiler

www.BasicCard.com
www.BasicCard.com

6. Support Software

9090

This hierarchy is not strictly enforced – you can run the debuggers outside the development
environment if you just want to test a simple program; or you can compile a program from the Win32
console command line if you don’t need to debug it.

*.ZCP Project Files

A Project File simply lists all the Program Files that belong to a single project. What constitutes a
project is up to you; the simplest projects contain one Terminal Program File and one BasicCard
Program File, but bigger projects may contain two or three Terminal Program Files and a dozen or
so BasicCard Program Files.

*.ZCT Terminal Program Files

A Terminal Program File contains:

• compiler options for a Terminal Program, including Source File, Include Paths, and Pre-
Defined Constants;

• run-time options, such as initial COM Port and Terminal Program command-line parameters;
• the positions of the various windows.

*.ZCC BasicCard Program Files

A BasicCard Program File can be thought of as a Virtual BasicCard. It contains:

• compiler options for a BasicCard Program, including Source File (or multiple Source Files for
a MultiApplication BasicCard), Card Type, Include Paths, and Pre-Defined Constants;

• the EEPROM contents of the Virtual BasicCard;
• the COM Port of the Virtual Card Reader that the program occupies;
• the positions of the various windows.

You can have more than one BasicCard Program File for a given source program, each with its
own Virtual EEPROM. And you can run more than one ZCMDCARD BasicCard Debugger at a
time, as long as no two debuggers occupy the same Virtual Card Reader COM Port.

*.BAS and *.DEF ZC-Basic Source Files

In our example programs, we make the distinction between .BAS files, which contain code, and
.DEF files, which contain only definitions and declarations. This distinction is purely conventional;
the compiler doesn’t treat the two file types differently.

ZC-Basic Source Files are described in Chapter 3: The ZC-Basic Language.

In addition, the ZCMBASIC Compiler produces the following two file types as output (among others –
see 6.9.1 The ZC-Basic Compiler ZCMBASIC.EXE for details):

*.IMG Image Files

An Image File contains a compiled Terminal Program or BasicCard Program, with no symbolic
debug information. Its contents are described in 11.1 ZeitControl Image File Format. Two
command-line programs accept Image Files as input (and Debug Files too, if the .DBG file
extension is explicitly given):

• the ZCMSIM P-Code Interpreter, which requires a Terminal Program Image File, and
optionally one or more BasicCard Program Image Files;

• the BCLOAD Download Program, which downloads a BasicCard Image File to a BasicCard.

See 6.9.2 The P-Code Interpreter ZCMSIM.EXE and 6.9.3 The Card Loader BCLOAD.EXE
for details.

*.DBG Debug Files

A Debug File contains all the information in an Image File, plus symbolic debug information for
the debuggers ZCMDTERM and ZCMDCARD. Its contents are described in 11.2 ZeitControl
Debug File Format.

6.4 Physical and Virtual Card Readers

91

6.4 Physical and Virtual Card Readers
Whenever you access a BasicCard or a Card Reader from a ZC-Basic Terminal Program, ZeitControl’s
P-Code Interpreter uses the current value of the ComPort variable to determines where to look for the
Card Reader. The meaning of the ComPort variable depends on the program that contains the P-Code
Interpreter: this can be an executable file, the ZCMSIM P-Code Interpreter, or the ZCMDTERM
Terminal Program Debugger.

6.4.1 ComPort in an Executable File
A ZC-Basic program compiled into an executable file accepts the following values for the ComPort
variable:

1 <= ComPort <= 4: Physical Card Reader on serial port COM1-COM4
100 <= ComPort <= 199: PC/SC Card Reader – see 3.21.4 PC/SC Functions
201 <= ComPort <= 204: Virtual Card Reader running in the ZCMDCARD debugger

6.4.2 ComPort in the ZCMSIM P-Code Interpreter
The ZCMSIM P-Code Interpreter accepts the same values for the ComPort variable as an executable
file, as listed in the previous section. In addition, ComPort may be set to any of the –P parameters
specified on the command line, in which case the corresponding simulated BasicCard is accessed – see
6.9.2 The P-Code Interpreter ZCMSIM.EXE.

6.4.3 ComPort in the ZCMDTERM Terminal Program Debugger
The ZCMDTERM Terminal Program Debugger accepts the following values for the ComPort
variable:

1 <= ComPort <= 4: Physical or Virtual Card Reader
100 <= ComPort <= 199: PC/SC Card Reader – see 3.21.4 PC/SC Functions
201 <= ComPort <= 204: Virtual Card Reader running in the ZCMDCARD debugger

If 1 <= ComPort <= 4, then ZCMDTERM has to decide whether to access a Physical or a Virtual
Card Reader. It does this on the basis of the settings in the Options|Terminal Programs...|Card
Readers dialog box. In this dialog box, each of COM1 through COM4 can be set to Real, Auto, or
Virtual:

Real Physical Card Reader is accessed
Auto Virtual Card Reader if available, otherwise Physical Card Reader
Virtual Virtual Card Reader running in the ZCMDCARD debugger

To enable communication between the Terminal Program and a BasicCard program running in the
ZCMDCARD BasicCard Program debugger, the ZCMDCARD debugger must know which COM
Port to attach to. You can specify this in one of two ways:

• in ZCMDCARD, via the Card|Insert in Virtual Reader... dialog box;
• in ZCMDCARD or ZCPDE, via the Options|BasicCard Program...|COM Ports dialog box.

The first of these is temporary; the second is permanent for the given BasicCard Program File.

6.5 Windows®-Based Software
The Windows®-based software consists of the following programs:

• ZCPDE, the ZeitControl Professional Development Environment. This program manages projects,
creating and maintaining ZeitControl Project files, with .ZCP extension. It also contains a built-in
text editor.

• ZCMDTERM, a source-level symbolic debugger for Terminal programs. It can communicate
with one or more ZCMDCARD debuggers, and one or more physical card readers. It uses
ZeitControl Terminal Program files, with .ZCT extension, to store the information that it needs to
compile and run Terminal Programs.

6. Support Software

9292

• ZCMDCARD, a source-level symbolic debugger for BasicCard programs. It waits for commands
from the Terminal debugger ZCMDTERM, executes the commands under the control of the user,
and sends its responses back to the Terminal debugger. It can also download BasicCard programs
to a real BasicCard. It uses ZeitControl BasicCard Program files, with .ZCC extension, to store the
information that it needs to compile and run BasicCard Programs.

6.6 The ZCPDE Professional Development Environment

93

6.6 The ZCPDE Professional Development Environment

The ZCPDE ZeitControl Professional Development Environment program manages
projects, creating and maintaining ZeitControl Project files, with .ZCP extension. It also
contains a built-in text editor.

6.6.1 ZCPDE File Menu
The File menu is for editing text files, and contains no project management functions. It contains the
following items:

New Create a new text file
Open... Open an existing text file
Open Source File� Open one of the project’s source files
Reopen � Open a recently opened text file
Save Save the current text file
Save As... Save the current text file under a new name
Save All Save all modified files
Close Close the current text file
Close All Close all current text files

Print... Print the current text file
Printer Setup... Set printer options

Exit Exit the ZCPDE program

6.6.2 ZCPDE Edit Menu
The Edit menu is for editing text files, and contains no project management functions. It contains the
following items:

Undo Undo the most recent edit operation
Redo Redo an operation that was cancelled with Undo

Cut Delete text and place it in the clipboard
Copy Copy text to the clipboard
Paste Copy text from the clipboard
Delete Delete text without placing it in the clipboard
Select All Select the whole text file

Find... Search for text
Find Next Find the next occurrence of the most recent search text
Replace... Search and replace

6. Support Software

9494

6.6.3 ZCPDE Project Menu
The Project menu contains the project management functions:

New Create a new project
Open... Open an existing project
Reopen� Open a recently opened project
Save As... Save the current project under a different name
Options Set the Project Options:

 Terminal Programs The project’s Terminal Progam Files
 BasicCard Programs The project’s BasicCard Progam Files
 Start Configuration The programs run by the Start item

Start Terminal� Start a Terminal Program in the ZCMDTERM debugger
Start BasicCard� Start a BasicCard Program in the ZCMDCARD debugger
Start Start all programs in the current project’s Start Configuration

Compile Terminal� Compile a Terminal Program from the current project
Compile BasicCard� Compile a BasicCard Program from the current project
Compile Again Re-compile the most recently compiled program
Compile All Compile all the programs in the current project

6.6.4 ZCPDE Options Menu
The Options menu sets the global options for the ZCPDE program. It contains a single item, which
brings up a multi-page dialog box:

Environment Editor Set tab width and font

Compiler Set Include Path, in Windows® Registry variable
“Software\ZeitControl\BasicCardPro\ZCINC”

CardReader Set default ComPort, in Windows® Registry variable
“Software\ZeitControl\BasicCardPro\ZCPORT”

6.6.5 ZCPDE Help Menu
The Help menu contains the following items:

BasicCard Manual Open this manual on-line
Open Example� Open one of the BasicCard example projects
About... Display software version number and product information

6.7 The ZCMDTERM Terminal Program Debugger

95

6.7 The ZCMDTERM Terminal Program Debugger

The ZCMDTERM ZeitControl Terminal Program Debugger is a source-level symbolic
debugger for Terminal programs. It can communicate with one or more ZCMDCARD
debuggers, and one or more physical card readers. It uses ZeitControl Terminal Program
files, with .ZCT extension, to store the information that it needs to compile and run
Terminal Programs.

6.7.1 ZCMDTERM File Menu
The File menu contains the following items:

New Create a new Terminal Program File
Open... Open an existing Terminal Program File
Save Save the current Terminal Program File
Save As... Save the current Terminal Program File under a new name

Edit... Edit a text file in the ZCPDE Professional Development Environment
Edit Source� Edit a source file from the current Terminal Program

Compile... Short cut to the Options|Terminal Program...|Compiler dialog box

Exit Exit the ZCMDTERM program

6.7.2 ZCMDTERM View Menu
The View menu contains the following items:

Source File� Display a selected source file in the debugger window
Procedure� Display a selected ZC-Basic procedure in the debugger window
Execution Point Display the code at the current PC
P-Code Display P-Code instructions and registers in the debugger window
Watches Open the Watches window for monitoring program data
Call Stack View all active procedures and their local data in the Call Stack window
I/O Open the I/O window for monitoring I/O between Terminal and BasicCard

6.7.3 ZCMDTERM Run Menu
The Run menu contains the following items:

Run Start execution from the current PC

Step Over Execute one instruction, stepping over procedure calls
Step Into Execute one instruction, stepping into procedure calls
Step Return Execute until the end of the current procedure
Step to Card Run until an instruction in a BasicCard program is reached
Step to Cursor Run to the current cursor position
Restart Restart the Terminal Program

Pause Interrupt execution

Evaluate... Evaluate an expression

Most of these items are also available as short-cut buttons in the debugger window, unless the
Options|Hide Buttons menu item was selected.

6. Support Software

9696

6.7.4 ZCMDTERM Options Menu
The Options menu contains the following items:

Terminal Program... Set the Terminal Program options:

Compiler Source file, include paths, etc.
Run-time COM port, log file, command-line parameters
Card Readers See 6.4.3 ComPort in the ZCMDTERM

Terminal Program Debugger

COM Port... Short cut to Terminal Program...|Run-time dialog box

Show/Hide Buttons Show or hide the Run menu short-cut buttons

6.7.5 ZCMDTERM Help Menu
The Help menu contains the following items:

BasicCard Manual Open this manual on-line
About... Display software version number and product information

6.8 The ZCMDCARD BasicCard Program Debugger

97

6.8 The ZCMDCARD BasicCard Program Debugger

The ZCMDCARD ZeitControl BasicCard Program Debugger is a source-level symbolic
debugger for BasicCard programs. It waits for commands from the Terminal debugger
ZCMDTERM, executes the commands under the control of the user, and sends its
responses back to the Terminal debugger. It can also download BasicCard programs to a
real BasicCard. It uses ZeitControl BasicCard Program files, with .ZCC extension, to store
the information that it needs to compile and run BasicCard Programs.

6.8.1 ZCMDCARD File Menu
The File menu contains the following items:

New Create a new BasicCard Program File
Open... Open an existing BasicCard Program File
Save Save the current BasicCard Program File
Save As... Save the current BasicCard Program File under a new name

Edit... Edit a text file in the ZCPDE Professional Development Environment
Edit Source� Edit a source file from the current BasicCard Program

Compile... Short cut to the Options|BasicCard Program...|Compiler dialog box

Exit Exit the ZCMDCARD program

6.8.2 ZCMDCARD Application Menu
The Application menu is visible if the MultiApplication BasicCard has been selected in the
Options|BasicCard Program... dialog box. It contains the following items:

Add... Add an Application to the Application List
Load All Load all Applications in the Application List into the virtual BasicCard

In addition, it contains a menu item for each Application in the Application List, with the following
sub-menu:

View View the Application’s source code
Compile... Compile the Application
Load... Load the Application into the virtual BasicCard
Remove... Remove the Application from the Application List

6.8.3 ZCMDCARD View Menu
The View menu contains the following items:

Source File� Display a selected source file in the debugger window
Procedure� Display a selected ZC-Basic procedure in the debugger window
Execution Point Display the code at the current PC
P-Code Display P-Code instructions and registers in the debugger window
Watches Open the Watches window for monitoring program data
Call Stack View all active procedures and their local data in the Call Stack window
I/O Open the I/O window for monitoring I/O between Terminal and BasicCard
File System View files and directories in the BasicCard
Files & Components View files and components in a MultiApplication BasicCard

6. Support Software

9898

6.8.4 ZCMDCARD Run Menu
The Run menu contains the following items:

Run Start execution from the current PC

Step Over Execute one instruction, stepping over procedure calls
Step Into Execute one instruction, stepping into procedure calls
Step Return Execute until the end of the current procedure
Step to Terminal Run until an instruction in the Terminal program is reached
Step to Cursor Run to the current cursor position

Pause Interrupt execution

Evaluate... Evaluate an expression

Most of these items are also available as short-cut buttons in the debugger window, unless the
Options|Hide Buttons menu item was selected.

6.8.5 ZCMDCARD Card Menu
The Card menu contains the following items:

Insert in Virtual Reader� Attach ZCMDCARD to a Virtual Card Reader COM Port
Remove from Virtual Reader Release the Virtual Card Reader COM Port
Download to Real Card... Download the BasicCard program to a real BasicCard

6.8.6 ZCMDCARD Options Menu
The Options menu contains the following items:

BasicCard Program... Set the BasicCard Program options:

Compiler Source file, card type, include paths, etc.
COM Ports Virtual and Physical Card Reader COM Ports

Show/Hide Buttons Show or hide the Run menu short-cut buttons

6.8.7 ZCMDCARD Help Menu
The Help menu contains the following items:

BasicCard Manual Open this manual on-line
About... Display software version number and product information

6.9 Command-Line Software

99

6.9 Command-Line Software
The following programs are run from a Win32 command-line console (or “DOS box”):

• ZCMBASIC, a compiler for the ZC-Basic programming language.

• ZCMSIM, a P-Code interpreter that runs compiled ZC-Basic programs. ZCMSIM runs a
Terminal program, and can run BasicCard programs simultaneously in simulated BasicCards, or
communicate via a card reader with genuine BasicCards.

• BCLOAD, for downloading P-Code to the BasicCard.

• KEYGEN, a program that generates random keys and primitive polynomials for use in encryption.

• BCKEYS, for downloading keys to the Compact and Enhanced BasicCards.

Each of these programs takes a filename as its main parameter. Other command-line parameters begin
with ‘–’ (minus sign) followed by one or more option letters, sometimes followed by data. No spaces
are allowed between the minus sign and the option letters, or between the option letters and the data.
Option letters may be upper or lower case.

ZCMBASIC, ZCMSIM, and BCLOAD support parameter input files: if any command-line parameter
has the form ‘@filename’, subsequent parameters are read from the given file, one line at a time.
Empty lines, and lines whose first non-space character is a single quote, are ignored. To specify a
parameter that begins with the ‘@’ character, simply repeat the ‘@’ character; for example, “@@X” is
passed to the program as “@X”, and is not treated as a parameter file. This feature is also active for
executable files created by the ZCMBASIC compiler.

Notes:

• Three of these programs – ZCMSIM, BCLOAD, and BCKEYS – communicate with a card
reader, via a serial port or the PC/SC driver. The default value of the COM port is taken from the
environment variable ZCPORT; or the Windows® Registry variable
“HKEY_CURRENT_USER\Software\ZeitControl\BasicCardPro\ZCINC” if this environment
variable does not exist; or 1 if neither of these variables exists. (To specify PC/SC reader number
n, set the COM port to 100+n.)

• If a filename parameter contains spaces, it must be enclosed in quotation marks on the command
line. (For example: ZCMBASIC -OI ″Hello World″ compiles the file “Hello
World.BAS” and creates the file “Hello World.IMG”.)

6. Support Software

100100

6.9.1 The ZC-Basic Compiler ZCMBASIC.EXE
The compiler ZCMBASIC.EXE takes ZC-Basic source code as input, and produces P-Code as output.
It compiles the entire program in one pass; there is no linking stage. To run the compiler:

ZCMBASIC [param [param . . .]] input-file [param [param . . .]]

input-file The ZC-Basic source file. If no file extension is supplied, input-file.bas is assumed.

param One of the following:

–Ctype Compiles code for the given virtual machine type:
–CT or –C0 Terminal (the default).
–CC1 or –C1.1 Compact BasicCard version ZC1.1
–CEn or –C3.n Series 3 Enhanced BasicCard version ZC3.n
–CFfilename Professional BasicCard with Configuration File filename.

 If no file extension is supplied, filename.zcf is assumed.
–CM MultiApplication BasicCard

See Sections 1.6–1.9 for information about the different BasicCard types.

–Dsymbol[=val] Defines symbol as if the source program contained the statement
Const symbol=val. The val parameter must be an integer or a string;
arithmetic expressions are not allowed. If val is absent, it defaults to 1.

–E[exe-file] Creates an executable file that will run in a DOS box under Microsoft
Windows®. If no file extension is supplied, exe-file.exe is created. If exe-
file is absent, input-file.exe is created.

–Hheap-size Specifies the Heap size of an Application for the MultiApplication
BasicCard. See 5.2.4 Memory Allocation for more information.

–Ipath Adds path to the list of directories to search for #Include files (see 3.3.1
Source File Inclusion). A closing backslash in path is optional. Multiple
paths may be supplied, separated by semicolons.

–Nserial-number Specifies the 8-byte Serial Number of a MultiApplication card, for use by
the Component Section parser in the compiler. serialnumber must consist
of 16 hexadecimal digits.

–OI[image-file] Generates an image file. If no file extension is supplied, image-file.img is
created. If image-file is absent, input-file.img is created.
The image file is described in 11.1 ZeitControl Image File Format.

–OD[debug-file] Generates a debug information file. If no file extension is supplied, debug-
file.dbg is created. If debug-file is absent, input-file.dbg is created.
The debug file is described in 11.2 ZeitControl Debug File Format.

–OA[app-file] Generates an Application file. If no file extension is supplied, app-file.app
is created. If app-file is absent, input-file.app is created. The output file is
a byte-for-byte copy of the Application file in the BasicCard. (Normally
you won’t need to create Application files, as the Application Loader
finds all the information it needs in the image file.)

–OL[list-file] Generates a list file. If no file extension is supplied, list-file.lst is created.
If list-file is absent, input-file.lst is created.
The list file is described in 11.4 List File Format.

–OM[map-file] Generates a map file. If no file extension is supplied, map-file.map is
created. If map-file is absent, input-file.map is created.
The map file is described in 11.5 Map File Format.

–OE[error-file] Writes all error messages to a file. If error-file already exists, it is deleted
before compilation begins. If no file extension is supplied, error-file.err is
created. If error-file is absent, input-file.err is created.

6.9 Command-Line Software

101

–Sstack-size Sets the size of the P-Code stack. Normally the compiler can work out for
itself how big the stack has to be. But if the program contains recursive
procedure calls or recursive GoSub calls, the compiler must guess the
stack size, because it can’t know how deep the recursion will go. You can
override this guess with –Sstack-size (or with the #Stack pre-processor
directive – see 3.3.9 Stack Size).

–Sstate Switches the card into the specified state after the P-Code is downloaded.
See also 3.3.7 Card State. Only the first letter of state is significant:

First letter of state: ‘L’ ‘P’ ‘T’ ‘R’
New card state: LOAD PERS TEST RUN

6. Support Software

102102

6.9.2 The P-Code Interpreter ZCMSIM.EXE
The program ZCMSIM.EXE loads and runs a compiled ZC-Basic Terminal program from a
ZeitControl Image File (or Debug File). It can also simultaneously run one or more BasicCard
programs in simulated BasicCards, or it can communicate with real BasicCards via physical card
readers. And for the MultiApplication BasicCard, it has a built-in Application Loader. To run the
ZCMSIM program:

ZCMSIM [param [param . . .]] image-file [P1$ [P2$. . .]]

Parameters before the image-file name are processed by the ZCMSIM program, as described below.
Parameters after the image-file name (P1$, P2$,...) are passed to the Terminal program via the pre-
defined String array Param$(1 To nParams) – see 3.21.10 Pre-Defined Variables.

image-file The image file output by the compiler. If no file extension is supplied, image-file.img is
assumed. (So if this is a Debug File, the .dbg extension must be present.)

Note: The image-file parameter must be present, unless ZCMSIM is functioning as an
Application Loader for the MultiApplication BasicCard.

param One of the following:

–Ccard-file The image file of a BasicCard program. If this parameter is present,
ZCMSIM simulates a BasicCard in the PC. If no file extension is
supplied, card-file.img is assumed. See also Note 2 below.

–Acard-file The image file of a MultiApplication BasicCard Application. The
Application Loader will be invoked to load the Application into the (real
or simulated) MultiApplication BasicCard. If no file extension is
supplied, card-file.img is assumed.

–L[log-file] Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-file.log is created. If log-
file is absent, image-file.log is created.

–Pcom-port The number of the COM port that the card reader is attached to. (This
can also be set from within the Terminal program itself, via the
ComPort pre-defined variable.) This parameter may appear more than
once – see Note 1 below.

–W Write the EEPROM data back to the image file(s) when the Terminal
program exits. The Terminal program EEPROM data is written back to
image-file. If the –C parameter is present on the command line, the
EEPROM data in the simulated BasicCard program is written back to
card-file when the Terminal program exits.

–WT[new-file] Write the Terminal program EEPROM data back to new-file when the
Terminal program exits. If no file extension is supplied, new-file.img is
created. If new-file is absent, the EEPROM data is written back to
image-file.

–WC[new-file] Write the EEPROM data in the simulated BasicCard program back to
new-file when the Terminal program exits. If no file extension is
supplied, new-file.img is created. If new-file is absent, the EEPROM data
is written back to card-file.

–D Display the Application Loader commands on the screen as they are
executed. (For use in conjunction with the –A parameter.)

P1$, P2$,... These parameters are separated by spaces or tabs. To pass a space or tab in a parameter,
enclose it in quotation marks; to pass a quotation mark in a parameter, precede it with a
backslash. (Backslashes not followed by quotation marks are passed as is.)

6.9 Command-Line Software

103

Notes:

1. If multiple –P parameters are present:

• –C and –WC apply to the card on the most recently specified COM port;
• the ComPort variable is set from the last –P parameter.

For instance, to communicate with a simulated BasicCard program on COM1 and a real BasicCard
on COM2:

ZCMSIM –P1 –Ccard-file –P2 image-file

2. If card-file is a ZeitControl Configuration File (with .ZCF or .MCF extension), an empty card of
the appropriate type is simulated. This is for the MultiApplication BasicCard – the BasicCard type
is not available from the image file of an Application (which is independent of the specific
BasicCard OS), so this information must be supplied separately, via the –C parameter. For
example, to test Applications App1 and App2 with Terminal program Term:

ZCMSIM –C\BasicCardPro\MultiApp\ZC65_A.MCF –AApp1 –AApp2 –D Term

In this case only, the image-file parameter may be absent; ZCMSIM then functions as a stand-
alone Application Loader. If the card-file parameter is also absent, ZCMSIM will attempt to load
the Applications into a real MultiApplication BasicCard. For instance:

ZCMSIM –P2 –AApp1 –AApp2 –D

6. Support Software

104104

6.9.3 The Card Loader BCLOAD.EXE
The program BCLOAD.EXE downloads P-Code and data to a single-application BasicCard.

The ZC-Basic compiler produces a ZeitControl Image File as output, containing P-Code and data in
binary form. To run the BCLOAD program:

BCLOAD [param [param . . .]] image-file [param [param . . .]]

image-file The image file output by the compiler. If no file extension is supplied, image-file.img is
assumed. (A debug file is also allowed here; in this case. the .dbg extension must be
supplied.)

param One of the following:

–D Displays the commands on the screen as they are executed.

–L[log-file] Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-file.log is created. If log-file
is absent, image-file.log is created.

–E[error-file] Writes all error messages to a file. If error-file already exists, it is deleted
before the download begins. (So if error-file exists after the program exits,
it means that an error occurred.) If no file extension is supplied,
error-file.err is created. If error-file is absent, image-file.err is created.

–Pcom-port The number of the COM port that the card reader is attached to.

–Sstate Switches the card into the specified state after the download. Only the first
letter of state is significant:

First letter of state: ‘L’ ‘P’ ‘T’ ‘R’
New card state: LOAD PERS TEST RUN

Notes:

1. The ZC-Basic source code for this program is supplied on the distributon disk, in the
BasicCardPro\Source\BCLoad directory. BCLOAD.EXE was compiled with the
COMPILE.BAT command file in the same directory.

2. To download an Application to the MultiApplication BasicCard, use the built-in Application
Loader in ZCMSIM or ZCMDCARD.

6.9 Command-Line Software

105

6.9.4 The Key Generator KEYGEN.EXE
The program KEYGEN.EXE generates cryptographic keys and primitive polynomials for the
encryption and decryption of commands and responses. It creates a ZC-basic source file containing
Declare Key and/or Declare Polynomial statements. This file can be #Included in the source code of
the Terminal and BasicCard programs, or it can be downloaded separately to a Compact or Enhanced
BasicCard using the BCKEYS Key Loader program. The program prompts the user to press keys on
the keyboard at random; the cryptographic keys and polynomials are generated from this user input,
after hashing with the MD5 algorithm (see R.L. Rivest, “The MD5 Message Digest Algorithm”, RSA
Data Security, Inc., April 1992). To run the KEYGEN program:

KEYGEN [param [param . . .]] key-file [param [param . . .]]

key-file The name of the key file to create or update. If no file extension is supplied, key-file.bas is
assumed.

param One of the following:

–Kkey[(len[, count])] key is a key number between 0 and 255; len is a key length between 1
and 255; and count is the initial value of the error counter for the key,
between 0 and 15 (see 3.17.3 Key Declaration). If len is absent, it
defaults to 8; if count is absent, the error counter for the key is
disabled. You can create multiple keys by specifying the –K
parameter more than once.

–P Generates two random primitive polynomials for use by the SG-
LFSR encryption algorithms.

–Q Generates random numbers quickly, without requiring keyboard
input from the user.

Note: This feature is provided for convenience of use during the
development of an application. Keys and polynomials generated with
the –Q parameter should not be used in a released application, as this
might compromise the security of the encryption algorithms.

–U key-file is updated, rather than being created from scratch – existing
keys and polynomials in key-file are preserved, unless overridden by
–K or –P.

Note: The generation of cryptographic keys is a delicate business. The security of the encryption
algorithms used by the BasicCard relies on the secrecy of the keys and polynomials generated by the
KEYGEN program, which in turn relies on the quality of the random number generator. To foster
confidence in the security of our product, we provide the C++ source code of the KEYGEN program
in the directory BasicCardPro\Source\Keygen.

6. Support Software

106106

6.9.5 The Key Loader BCKEYS.EXE
The program BCKEYS.EXE downloads cryptographic keys and/or polynomials to a Compact or
Enhanced BasicCard. The following conditions apply to the downloading of keys and polynomials:

• The BasicCard must be in state LOAD (or switchable to state LOAD);
• The BasicCard must already have been loaded with P-Code and data by the BCLOAD program;
• All keys that you want to download must have been declared in the ZC-Basic source code, with

Declare Key statements.

The program takes a key file as input. This is a ZC-Basic source file that contains only Declare Key
and/or Declare Polynomials statements. The KEYGEN program can generate key files for you – see
6.9.4 The Key Generator KEYGEN.EXE.

To run the BCKEYS program:

BCKEYS [param [param . . .]] key-file [param [param . . .]]

key-file The key file, as described above. If no file extension is supplied, key-file.bas is assumed.

param One of the following:

–K[key] key is a key number between 0 and 255. You can download multiple keys
by specifying this parameter more than once. If key is absent, all the keys
in key-file are downloaded.

–P Downloads the polynomials to the BasicCard.

 If neither –K nor –P appears on the command line, then all the keys and
polynomials in key-file are downloaded.

–L[log-file] Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-file.log is created. If log-file
is absent, key-file.log is created.

–D Displays the commands on the screen as they are executed.

–Pcom-port The number of the COM port that the card reader is attached to.

–Sstate Switches the card into the specified state after the download. Only the first
letter of state is significant:

First letter of state: ‘L’ ‘T’ ‘R’
New card state: LOAD TEST RUN

Note: State PERS is not available in Compact or Enhanced BasicCards, so
it is not allowed here.

107

7. System Libraries
In Terminal programs and Enhanced, Professional, and MultiApplciation BasicCard programs, the
functionality of the ZC-Basic language can be extended using ZeitControl System Libraries.

In Terminal programs, and Professional and MultiApplication BasicCards, the System Libraries are
built into the Operating System; in the Enhanced BasicCard, System Libraries are implemented as
Plug-In Libraries that are loaded into EEPROM only if they are needed. A ZeitControl Plug-In Library
File library.lib is provided for each Enhanced BasicCard Plug-In Library. In all cases, to use a library:

#Include library.def

This loads the library if necessary, and declares its procedures and data.

The following System Libraries are currently available:

 Name Description Terminal
Enhanced
BasicCard

Professional
BasicCard

Multi-
Application
BasicCard

 RSA RSA Public-Key Cryptography *
 AES Advanced Encryption Standard *
 EC–211 211-bit Elliptic Curve Cryptography *
 EC–167 167-bit Elliptic Curve Cryptography *
 EC–161 161-bit Elliptic Curve Cryptography

 COMPONENT Security Component handling

 EAX Encryption with Authentication *
 OMAC Message Authentication *
 SHA Secure Hash Algorithms

 IDEA International Data Encryption Algorithm

 MATH Mathematical functions

 MISC Miscellaneous procedures

* These System Libraries are available in some, but not all, Professional BasicCards. See the
Professional BasicCard datasheet for the latest information.

These libraries are supplied with the distribution kit, in the BasicCardPro\Lib directory. The
program LIBVER, in the same directory, displays the name and version number of an Enhanced
BasicCard Plug-In Library file.

In the descriptions of the individual libraries, error codes may be defined. These error codes are
signalled via the LibError variable. The ZCMBASIC compiler automatically declares this variable if
any libraries are included that can return an error code. LibError contains the most recent error code
signalled by a library procedure. A library procedure never sets LibError back to zero; if you want to
continue after detecting a library error, you should set LibError to zero yourself.

A library error code is a 2-byte value of the form &H4XXX, with the high nibble equal to 4. Therefore,
unless you are using the T=0 protocol (and at the cost of strict ISO compatibility), you can return
LibError in the SW1SW2 status word if a library error occurs in a BasicCard program. For example:

Sub CheckLibError()
If LibError = 0 Then Exit Sub
SW1SW2 = LibError
LibError = 0 ′ Reset LibError for the next command
Exit

End Sub

7. System Libraries

108108

7.1 RSA: The Rivest-Shamir-Adleman Library
The RSA library implements Rivest-Shamir-Adleman public-key cryptography. It is based on the
document PKCS #1 v2.0: RSA Cryptography Standard from RSA Data Security, Inc. The following
operations are supported:

• on-card private/public key pair generation, with public key length up to 1024 bits;
• encryption and decryption;
• digital signature generation and verification.

7.1.1 Overview
In the RSA Plug-In Library, a private key consists of three numbers (p, q, e), where p and q are prime
numbers and e is a number relatively prime to p-1 and q-1. The corresponding public key consists of
the two numbers (n, e), where n is the product of p and q.

The private exponent d is the inverse of e modulo (p-1)(q-1). Mathematically, this means that for any
number m, med is equal to m modulo n. If Alice wants to send a message m to Bob that only Bob can
decrypt, Alice computes c = me modulo n using Bob’s public key (nB, eB). Bob can then recover m
modulo n (and therefore m, if m is less than n), as follows:

• using p and q, compute the private exponent d;
• compute m = cd modulo n.

Similarly, if Alice wants to sign a message m, she computes the private exponent d using her own
private key (pA, qA, eA), and then computes the signature s = md modulo n. Anyone who has Alice’s
public key (nA, eA) can verify that se = m modulo n; and therefore that whoever created the signature s
had knowledge of Alice’s private key (and was therefore presumably Alice herself).

The security of the RSA system rests on the difficulty of recovering p and q if only their product n is
known: the factorisation problem. If I know n and e, but I don’t know p and q, then I can’t calculate the
private exponent d. The difficulty of the factorisation problem depends on the size of n. Current state-
of-the-art factoring methods can factor a 512-bit public key in a matter of months; 768-bit public keys
are expected to resist factorisation for a few more years; and 1024-bit keys are expected to be secure
for the foreseeable future.

The RSA Plug-In Library represents large integers as ZC-Basic strings; the first byte in the string (with
subscript 1) is the most significant byte.

To load the RSA library:

#Include RSA.DEF

The file RSA.DEF is supplied with the distribution kit, in the BasicCardPro\Lib directory.

The following procedures are provided:

Function RsaPseudoPrime (x$, nRounds)
Sub RsaGenerateKey (nBits, eBits, p$, q$, e$)
Function RsaPublicKey (p$, q$) As String
Sub RsaEncrypt (Mess$, n$, e$)
Sub RsaDecrypt (Mess$, p$, q$, e$)
Sub RsaPKCS1Sign (Hash$, p$, q$, e$, Sig$)
Function RsaPKCS1Verify (Hash$, n$, e$, Sig$)
Sub RsaPKCS1Encrypt (Mess$, n$, e$)
Function RsaPKCS1Decrypt (Mess$, p$, q$, e$)
Sub RsaOAEPEncrypt (Mess$, EP$, n$, e$)
Function RsaOAEPDecrypt (Mess$, EP$, p$, q$, e$)

These procedures are described in the following sections.

7.1.2 Key Generation
To generate a private key:

Call RsaGenerateKey (nBits, eBits, p$, q$, e$)

7.1 RSA: The Rivest-Shamir-Adleman Library

109

nBits Length of public key n. Set nBits = 1024 for maximum security. In a BasicCard
program, nBits must be a multiple of 16, with 496 <= nBits <= 1024. In a Terminal
program, nBits can be any number between 16 and 4064.

eBits Length of public exponent e. In a BasicCard program, eBits must be a multiple of 8,
with 8 <= eBits <= 32. In a Terminal program, eBits can be any number between 8
and 2032. If nBits is 1024, we recommend eBits = 32.

p$, q$, e$ The private key (p, q, e).

RsaGenerateKey uses the Rabin-Miller primality test, as described in IEEE P1363: Standard
Specifications for Public Key Cryptography. The number of Rabin-Miller rounds depends on nBits;
it is chosen so that the probability of a given factor being composite is less than 1 in 2100.

The following error codes are returned in the LibError variable:

RsaKeyTooShort In a BasicCard program: nBits < 496.
In a Terminal program: nBits < 16.

RsaKeyTooLong In a BasicCard program: nBits > 1024.
In a Terminal program: nBits > 4064.

RsaBadProcParams In a BasicCard program: nBits is not a multiple of 16, or eBits is not a
multiple of 8, or eBits < 8, or eBits > 32.
In a Terminal program: eBits < 8, or eBits > 2032.

To calculate the public key modulus n from p and q:

n$ = RsaPublicKey (p$, q$)

The following error code is returned in the LibError variable:

RsaKeyTooLong In a BasicCard program: p$ or q$ longer than 512 bits.
In a Terminal program: n$ longer than 2032 bits.

If you want to generate your own random numbers p$ and q$, you can test them for primality with:

IsPrime = RsaPseudoPrime (x$, nRounds)

x$ Number to test for primality.
nRounds Number of rounds of Rabin-Miller primality test to run.
IsPrime True if x$ survives nRounds rounds of the Rabin-Miller primality test.

7.1.3 Cryptographic Primitives
Four cryptographic primitives are defined in PKCS #1 v2.0: RSA Cryptography Standard:

RSAEP ((n, e), m) RSA Encryption Primitive: c = me modulo n
RSADP ((n, d), c) RSA Decryption Primitive: m = cd modulo n
RSASP1 ((n, d), c) RSA Signature Primitive 1: s = md modulo n
RSAVP1 ((n, e), s) RSA Verification Primitive 1: m = se modulo n

RSAEP and RSAVP1 are functionally identical, as are RSADP and RSASP1. The RSA Plug-In
Library provides two procedures. In a BasicCard, the exponent e$ must be odd, and less than n$:

Cryptographic primitives RSAEP and RSAVP1

Call RsaEncrypt (Mess$, n$, e$)

This procedure computes Mess$ e$ modulo n$, returning the result in Mess$.

In a BasicCard program, the following error codes are returned in the LibError variable:

RsaKeyTooShort n$ is shorter than 248 bits
RsaKeyTooLong n$ is longer than 1024 bits
RsaBadProcParams Mess$ is longer than 1024 bits

Cryptographic primitives RSADP and RSASP1

Call RsaDecrypt (Mess$, p$, q$, e$)

7. System Libraries

110110

This procedure first computes d$ = inverse of e$ modulo (p$-1)(q$-1). Then it computes Mess$ d$

modulo p$ q$, returning the result in Mess$.

In a BasicCard program, the following error codes are returned in the LibError variable:

RsaKeyTooShort p$ or q$ is shorter than 248 bits
RsaKeyTooLong p$ or q$ is longer than 512 bits
RsaBadProcParams Mess$ is longer than 1024 bits

7.1.4 Signature Scheme With Appendix
As described in PKCS #1 v2.0: RSA Cryptography Standard, a signature scheme with appendix
consists of a signature generation operation and a signature verification operation. One signature
scheme with appendix is defined: RSASSA-PKCS1-v1_5.

The RSA Plug-In Library uses SHA-1 as the hash function for the signature scheme.

To generate a signature using the RSASSA-PKCS1-V1_5-SIGN signature generation operation:

Call RsaPKCS1Sign (Hash$, p$, q$, e$, Sig$)

Hash$ The 20-byte SHA-1 hash of the data to be signed.
p$, q$, e$ The private key (p, q, e).
Sig$ The signature calculated by RsaPKCS1Sign. It has the same size as n$ (where n =

pq is the public-key modulus).

The following error codes are returned in the LibError variable:

RsaKeyTooShort n$ is shorter than 376 bits
RsaBadProcParams Hash$ is not 20 bytes long

To verify a signature using the RSASSA-PKCS1-V1_5-VERIFY signature verification operation:

SignatureValid = RsaPKCS1Verify (Hash$, n$, e$, Sig$)

Hash$ The 20-byte SHA-1 hash of the data that was signed.
n$, e$ The private key (n, e).
Sig$ The signature to be verified.
SignatureValid True if the signature is valid.

The following error codes are returned in the LibError variable:

RsaKeyTooShort n$ is shorter than 376 bits
RsaBadProcParams Hash$ is not 20 bytes long

7.1.5 Encryption Schemes
As described in PKCS #1 v2.0: RSA Cryptography Standard, an encryption scheme consists of an
encryption operation and a decryption operation. Two encryption schemes are defined: RSAES-
PKCS1-v1_5 and RSAES-OAEP. The second of these is cryptographically more robust, but is bigger
and slower; it is currently only available in Terminal programs.

The RSA Plug-In Library uses SHA-1 as the hash function for the encryption schemes.

The RSAES- PKCS1-v1_5 Encryption Scheme

To encrypt a message using the RSAES-PKCS1-V1_5-ENCRYPT encryption operation:

Call RsaPKCS1Encrypt (Mess$, n$, e$)

Mess$ The message to be encrypted. It must be at least 11 bytes shorter than n$. The
encrypted message is returned in Mess$.

n$, e$ The public key (n, e).

The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not at least 11 bytes shorter than n$.

To decrypt a message using the RSAES-PKCS1-V1_5-DECRYPT decryption operation:

7.2 AES: The Advanced Encryption Standard Library

111

MessageValid = RsaPKCS1Decrypt (Mess$, p$, q$, e$)

Mess$ The message to be decrypted. It must be the same length as n$ (where n = pq is the
public-key modulus). The decrypted message is returned in Mess$.

p$, q$, e$ The private key (p, q, e).
MessageValid True if Mess$ was successfully decrypted.

The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not the same size as n$.

The RSAES-OAEP Encryption Scheme

The RSAES-OAEP scheme accepts encoding parameters as input. The same encoding parameters
must be specified for encryption and decryption. The encoding parameters can be any arbitrary string,
and need not be secret; if in doubt, use the empty string “”.

To encrypt a message using the RSAES-OAEP-ENCRYPT operation (Terminal programs only):

Call RsaOAEPEncrypt (Mess$, EP$, n$, e$)

Mess$ The message to be encrypted. It must be at least 42 bytes shorter than n$. The
encrypted message is returned in Mess$.

EP$ The encoding parameters. Any string is accepted.
n$, e$ The public key (n, e).

The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not at least 42 bytes shorter than n$.

To decrypt a message using the RSAES-OAEP-DECRYPT operation (Terminal programs only):

MessageValid = RsaOAEPDecrypt (Mess$, EP$, p$, q$, e$)

Mess$ The message to be decrypted. It must be the same length as n$ (where n = pq is the
public-key modulus). The decrypted message is returned in Mess$.

EP$ The encoding parameters. They must match the EP$ parameter to the
RsaOAEPEncrypt procedure.

p$, q$, e$ The private key (p, q, e).
MessageValid True if Mess$ was successfully decrypted.

The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not the same size as n$.

7.2 AES: The Advanced Encryption Standard Library
This library implements the Advanced Encryption Standard defined in Federal Information Processing
Standard FIPS 197. This standard is available on the Internet, at http://csrc.nist.gov/encryption/aes/.
AES uses the Rijndael algorithm as its cryptographic primitive. The Standard specifies three permitted
key lengths: 128 bits, 192 bits, and 256 bits. All three key lengths are available to Terminal programs.
At the time of writing, Professional BasicCard ZC5.5 and MultiApplication BaicCard ZC6.5 support
all three key lengths; other versions of the BasicCard are restricted to 128-bit keys.

To load this library:

#Include AES.DEF

The file AES.DEF is supplied with the distribution kit, in the BasicCardPro\Lib directory.

The AES library consists of a single procedure:

Function AES (Type%, Key$, Block$) As String

This function encrypts or decrypts the 16-byte Block$ with the given Key$, acording to the Type%
parameter:

http://crsc.nist.gov/encryption/aes/

7. System Libraries

112112

Type%
 128 Encryption with 128-bit key. Len (Key$) must be >= 16.
 192 Encryption with 192-bit key. Len (Key$) must be >= 24.
 256 Encryption with 256-bit key. Len (Key$) must be >= 32.

 -128 Decryption with 128-bit key. Len (Key$) must be >= 16.
 -192 Decryption with 192-bit key. Len (Key$) must be >= 24.
 -256 Decryption with 256-bit key. Len (Key$) must be >= 32.

The return value of the function is the encrypted or decrypted Block$. If Block$ is shorter than 16
bytes, it is padded with zeroes before encryption/decryption; if it is longer than 16 bytes, it is truncated
before encryption/decryption. In any case, the contents of the original Block$ are unchanged.

The following error codes are returned in the LibError variable:

AesBadType Type% is not ±128, ±192, or ±256.
AesUnsupportedType Type% is ±192 or ±256, but the key length is not supported.
AesKeyTooShort Key$ is shorter than 16/24/32 bytes.

7.3 The Elliptic Curve Libraries
Elliptic Curve Cryptography is a branch of Public Key Cryptography that is especially suitable for
Smart Card implementation, for (at least) two reasons:

• the generation of private/public key pairs is simple enough to be implemented in a Smart Card;

• it requires much smaller key sizes than other well-known methods for the same level of security.

Three Elliptic Curve libraries are available for ZC-Basic programs:

• Library EC–211 over the field GF(2211), with 211-bit keys. This is the most secure of the three
Elliptic Curve libraries, currently considered equivalent to 2048-bit RSA. It is available for
Professional BasicCard ZC5.5 REV H, MultiApplication BasicCard ZC6.5 REV D, and all higher
revisions.

• Library EC–167 over the field GF(2167), with 167-bit keys. This is currently considered equivalent
to 1024-bit RSA. It is available for all Series 5 Professional BasicCards and Series 6
MultiApplication BasicCards.

• Library EC–161 over the field GF(2168), with 161-bit keys. See below for a discussion on the
security of this library compared to the EC–167 library. It is available for all Enhanced
BasicCards.

All three libraries are available to Terminal programs.

The important difference between libraries EC–167 and EC–161 is not the key length (167 vs. 161),
but the field exponent (167 vs. 168). In a Smart Card implementation of Elliptic Curve Cryptography,
arithmetic over the underlying field must be made as fast as possible. Certain field exponents allow
ingenious short cuts, speeding up the arithmetic significantly. One such exponent is 168, as used by
EC–161. Our implementation achieves a speed-up factor of five or six; without this speed-up, Elliptic
Curve Cryptography in the Enhanced BasicCard would be too slow for practical use.

However, the latest consensus among experts is that the field exponent should be a prime number, such
as 211 or 167; certain composite exponents have been shown to be cryptographically weak, and the
feeling is that all composite exponents (for example, 168) should therefore be avoided. So current
expert opinion would not recommend library EC–161 for applications requiring maximum security.

Each library supports the following Elliptic Curve operations:

• private/public key pair generation;
• session key generation;
• digital signature generation;
• digital signature verification (not available in the Enhanced BasicCard).

7.3 The Elliptic Curve Libraries

113

Our implementation follows the standard IEEE P1363: Standard Specifications for Public Key
Cryptography. Section 7.3.9 Conformance Specification specifies the methods used in the Elliptic
Curve libraries, using the terminology of IEEE P1363.

A simple Elliptic Curve application can be found in the directory BasicCardPro\Examples\EC.

7.3.1 Loading an Elliptic Curve Library
To load an Elliptic Curve library:

#Include EC–XXX.DEF

(we use XXX, here and later, to denote any of 211, 167, or 161). These files are supplied with the
distribution kit, in the BasicCardPro\Lib directory.

7.3.2 Setting the Elliptic Curve Parameters
An Elliptic Curve is defined by its EC Domain Parameters; suitable Elliptic Curves are supplied in the
directory BasicCardPro\Lib\Curves. Choose one of these for your application. We supply five
Elliptic Curves for libraries EC–211 and EC–167, and three Elliptic Curves for library EC–161. The
Curve Definition Files EC211-1.16 through EC211-5.128, EC167-1.16 through EC167-5.128, and
EC161-1.16 through EC161-5.64 contain curve definitions in ZC-Basic, for inclusion in a source
program. File EC-XXX.BIN contains the binary data for all the curves for a given library, for run-time
loading in a Terminal program.

Specifying an Elliptic Curve in a Enhanced or Professional BasicCard program

To specify the EC Domain Parameters to be used in an Enhanced or Professional BasicCard program:

#Include Curves\ECXXX–C.N

where C is a curve number from 1 to 5 (from 1 to 3 for library EC–161), and N is a power of 2 between
16 and 128 (between 16 and 64 for library EC–161). In an Enhanced or Professional BasicCard
program, the curve must be chosen at compile time; it can’t be re-loaded at run-time. This Curve
Definition File loads N pre-computed Elliptic Curve points into EEPROM to speed up Elliptic Curve
operations. The more pre-computed points, the faster the card, but the less free EEPROM space. If
EEPROM space is at a premium, use 16 pre-computed points; if speed is the most important factor, use
64 or 128 pre-computed points.

Specifying an Elliptic Curve in a MultiApplication BasicCard program

To specify the EC Domain Parameters to be used in a MultiApplication BasicCard program:

Call ECXXXSetCurve (filename$)

where filename$ is the name of a file in the BasicCard that contains the same data as one of the
Curves\ECXXX–C.N curve definition files. The data in this file must occupy a single contiguous data
block in EEPROM. See the preceding paragraph for the meaning of C and N.

For example:

Dir ″\ECApp″ ′ Start File Definition Section
File ″CurveParams″ Len=0 ′ Len=0 makes single contiguous block

Lock=Read:Always ′ Read-only access for everybody
#Include ″Curves\EC211–2.64″ ′ Import file data

End Dir Lock=Read:Always ′ End File Definition Section

Call EC211SetCurve (″\ECApp\CurveParams″)
If LibError <> 0 Then ′ Report error
...

Alternatively, if the special file “ECDomainParams” exists in the Root Directory, it is automatically
loaded whenever the card is reset – see 5.3.3 Elliptic Curve Domain Parameters.

7. System Libraries

114114

Specifying an Elliptic Curve in a Terminal program

In the Terminal program, an Elliptic Curve must be explicitly loaded using ECXXXSetCurve. There
are three ways of doing this:

• If you know in advance which curve to use, you can include its definition file. For example:

#Include EC211-3.16
Call EC211SetCurve (EC211Params)

But note that only one such definition file is allowed in a program.

• If the card has a suitable command, you can load the curve from the card. For example:

Private Curve As EC167DomainParams
Call GetCurve (Curve) : Call CheckSW1SW2()
Call EC167SetCurve (Curve)

See BasicCardPro\Examples\EC for an example of this.

• You can read the curve from binary files EC-XXX.BIN. For example:

Private Curve As EC161DomainParams
Open ″EC-161.BIN″ For Random As #1 Len=Len(EC161DomainParams)
Get #1, 2, Curve ′ Read Elliptic Curve #2
Close #1
Call CheckFileError()
Call EC161SetCurve (Curve)

If the EC domain parameters are invalid, procedure ECXXXSetCurve returns error code
ECXXXBadCurveParams in variable LibError.

In a Terminal program or a MultiApplication BasicCard program, you must call ECXXXSetCurve
before you call any other procedures from the EC–XXX library. If not, error code
ECXXXCurveNotInitialised will be returned in variable LibError.

7.3.3 Key Generation
To generate a public/private key pair:

Case 1: Terminal and single-application BasicCard programs
Call ECXXXGenerateKeyPair()

Case 2: MultiApplication BasicCard program
Call ECXXXGenerateKeyPair (PrivateKey$, PublicKey$)

This procedure generates a random private key and its associated public key, storing them in Eeprom
strings ECXXXPrivateKey and ECXXXPublicKey (Case 1) or in the procedure parameters
PrivateKey$ and PublicKey$ (Case 2). The EC–211 library generates 27-byte private and public keys;
the EC–167 library generates 21-byte private and public keys; and the EC–161 library generates a 21-
byte private key and a 22-byte public key.

7.3.4 Computing a Public Key from a Private Key
Case 1: Terminal and single-application BasicCard programs
Call ECXXXSetPrivateKey (PrivateKey$)

This procedure copies PrivateKey$ (reduced modulo r) to the Eeprom string ECXXXPrivateKey, and
computes the associated Eeprom string ECXXXPublicKey. (r is explained in 7.3.8 Binary
Representation Formats: EC Domain Parameters.) Key lengths are as described in the previous
paragraph, 7.3.3 Key Generation.

Case 2: MultiApplication BasicCard program

PublicKey$ = ECXXXMakePublicKey (PrivateKey$)

This function computes the public key from a specific private key.

If PrivateKey$ is zero modulo r, error code ECXXXBadProcParams is returned in variable LibError.

7.3 The Elliptic Curve Libraries

115

7.3.5 Generating a Digital Signature
A private key is used to generate digital signatures. To sign data consisting of a String expression:

Case 1: Terminal and single-application BasicCard programs
Signature$ = ECXXXHashAndSign (Data$)

Case 2: MultiApplication BasicCard program
Signature$ = ECXXXHashAndSign (PrivateKey$, Data$)

The EC–211 library returns a 54-byte signature; libraries EC–167 and EC–161 return a 42-byte
signature.

To sign a longer body of data, first compute the hash function for the data (see 7.7.1 Hashing
Functions), and then:

Case 1: Terminal and single-application BasicCard programs
Signature$ = ECXXXSign (Hash$)

Case 2: MultiApplication BasicCard program
Signature$ = ECXXXSign (PrivateKey$, Hash$)

In Case 1, if no private key has been set, these procedures return error code ECXXXKeyNotInitialised
in variable LibError.

7.3.6 Verifying a Digital Signature
To verify a digital signature, you need the signer’s public key. To verify the signature of a message
consisting of a String expression:

Status = ECXXXHashAndVerify (Signature$, Message$, PublicKey$)

Signature$ The signature to be verified: 54 bytes (EC–211) or 42 bytes (EC–167 and EC–161)
Message$ The message that was signed
PublicKey$ The signer’s public key: 27 bytes (EC–211), 21 bytes (EC–167), 22 bytes (EC–161)

This function returns True or False according to whether the signature is valid or not.

To verify a longer message, first compute the hash function for the message (see 7.7.1 Hashing
Functions), and then verify its signature with the function:

Status = ECXXXVerify (Signature$, Hash$, PublicKey$)

If Signature$ or PublicKey$ are not the correct length, error code ECXXXBadProcParams is returned
in variable LibError.

7.3.7 Session Key Generation
If two parties know each other’s public keys, they can use them to agree on a secret value, 27 bytes
long for the EC–211 library and 21 bytes long for the EC–167 and EC–161 libraries. This value is
called the shared secret for the two parties; to compute it, you need to know the private key of one
party and the public key of the other party. To compute the shared secret:

Case 1: Terminal and single-application BasicCard programs
SharedSecret$ = ECXXXSharedSecret (PublicKey$)

Case 2: MultiApplication BasicCard program
SharedSecret$ = ECXXXSharedSecret (PrivateKey$, PublicKey$)

PrivateKey$ The known private key (in Case 1, this must be in ECXXXPrivateKey)
PublicKey$ The other party’s public key
SharedSecret$ The shared secret

If PublicKey$ is not the correct length, or it is not a point on the curve, error ECXXXBadProcParams
is returned in variable LibError.

This shared secret can then be used to generate session keys for encrypting messages between the two
parties; unlike the shared secret, a session key can be different on different occasions. EC–211 uses the

7. System Libraries

116116

SHA–256 algorithm to generate 32-byte session keys; EC–167 and EC–161 use the SHA–1 algorithm
to generate 20-byte session keys.

To generate a session key, the parties must agree on a Key Derivation Parameter, which can be any
sequence of bytes, and need not be kept secret. For maximum security, it should be different each time
a session key is generated. For example, it might be a standard header followed by the date and time.
To generate the session key:

SessionKey$ = ECXXXSessionKey (KDP$, SharedSecret$)

KDP$ Key Derivation Parameter, a string of any length
SharedSecret$ The shared secret value, returned by ECXXXSharedSecret
SessionKey$ The 32-byte or 20-byte session key

Note: Generating a shared secret is a complicated calculation, which can take several seconds in some
BasicCards. But once a shared secret has been generated for a given public key, session key generation
is mush faster, especially if Len(KDP$) + Len(SharedSecret$) <= 55. (Typically, a smart card
application will only need to generate session keys for a single public key, for which the shared secret
is computed just once in the card’s lifetime.)

7.3.8 Binary Representation Formats
This section specifies the binary representations of the data objects that are used in the Elliptic Curve
libraries: integers, field elements, elliptic curves, points on the curve, and signatures.

Integers

Integers in this implementation have a length of either 1 byte, 21 bytes, or 27 bytes. The first (or
leftmost) byte is the most significant – in a 27-byte integer, it contains bits 215-208; in a 21-byte
integer, it contains bits 167-160. The last (or rightmost) byte contains bits 7-0.

Field Elements

The library EC–211 implements operations on Elliptic Curves over the field GF(2211). An element of
GF(2211) is represented by 211 bits stored in 27 bytes. A Polynomial Basis field representation is used;
the Field Polynomial is

p(t) = t2 1 1 + t1 1 + t1 0 + t8 + 1

The first (leftmost) byte contains the coefficients of t2 1 0 and t2 0 9 .

The library EC–167 implements operations on Elliptic Curves over the field GF(2167). An element of
GF(2167) is represented by 167 bits stored in 21 bytes. A Polynomial Basis field representation is used;
the Field Polynomial is

p(t) = t1 6 7 + t6 + 1

The first (leftmost) byte contains the coefficients of t1 6 6 through t1 6 0 .

The library EC–161 implements operations on Elliptic Curves over the field GF(2168). An element of
GF(2168) is represented by 168 bits stored in 21 bytes. The field representation is non-standard (i.e. it
does not use a Polynomial Basis or a Normal Basis); for this reason we provide source code, in C and
ZC-Basic, for converting between ZeitControl’s EC–161 representation and a standard Polynomial
Basis representation. This Polynomial Basis representation uses irreducible field polynomial

p(t) = t1 6 8 + t1 5 + t3 + t2 + 1

The source code is in directory BasicCardPro\Source\FldConv.

EC Domain Parameters

An Elliptic Curve E over GF(2m) is defined by an equation of the form

y 2 + xy = x3 + ax2 + b

where a and b are elements of GF(2m) with b ≠ 0. The curve E consists of all points (x, y) with x ̧y ∈
GF(2m) that satisfy this equation, together with a Point at Infinity, denoted O. The order #E of the curve
is the number of points in E. For cryptographic purposes, this order must have a large prime divisor, i.e.
#E = kr for some (large) prime r. As well as a, b, r, and k, a point G ∈ E must be specified, of order r

7.3 The Elliptic Curve Libraries

117

(that is, r is the smallest positive integer such that rG = O.) Field elements a and b ∈ GF(2m), integers r
and k, and point G ∈ E constitute the EC domain parameters.

The library EC–211 accepts any set of EC domain parameters (a, b, r, k, G) satisfying the following:
• a is zero in all bit positions except for bits 7-0 ;
• r is exactly 211 bits long, i.e. 2210 < r < 2211 ;
• k is equal to 2.

The user-defined type EC211DomainParams, defined in file BasicCardPro\Lib\EC-211.DEF,
contains curve parameters a (1 byte), b (27 bytes), r (27 bytes), and G (27 bytes), for a total of 82 bytes.

The library EC–167 accepts any set of EC domain parameters (a, b, r, k, G) satisfying the following:
• a is zero in all bit positions except for bits 7-0 ;
• r is exactly 167 bits long, i.e. 2166 < r < 2167 ;
• k is equal to 2.

The user-defined type EC167DomainParams, defined in file BasicCardPro\Lib\EC-167.DEF,
contains curve parameters a (1 byte), b (21 bytes), r (21 bytes), and G (21 bytes), for a total of 64 bytes.

The library EC–161 accepts any set of EC domain parameters (a, b, r, k, G) that satisfies the following
conditions:

• a is zero in all bit positions except for bits 78-72 ;
• r is exactly 161 bits long, i.e. 2160 < r < 2161 ;
• k is a single byte, equal to 2 modulo 4.

The user-defined type EC161DomainParams, defined in file BasicCardPro\Lib\EC-161.DEF,
contains curve parameters a (1 byte), b (21 bytes), r (21 bytes), k (1 byte), and G (22 bytes), for a total
of 66 bytes.

Points on the Curve

Points on the curve play two roles in Elliptic Curve cryptography:
• EC domain parameter G is a point on the curve;
• every public key is a point on the curve. (For a private key s, the corresponding public key is sG.)

If P is on the curve and xP ≠ 0, then y 2 + xPy = xP
3 + axP

2 + b has two solutions, y0 and y1. Moreover,
the two expressions y0 / xP and y1 / xP differ only in bit 0 (in the Polynomial Basis representation); so if
we know xP and bit 0 of yP / xP , we can recover point P in full. This bit is called the compressed y-
coordinate of the point P, denoted ỹP.

A point P on a curve over GF(2211) is represented by 27 bytes, with ỹP in bit 215, and xP in bits 210-0.

A point P on a curve over GF(2167) is represented by 21 bytes, with ỹP in bit 167, and xP in bits 166-0.

A point P on a curve over GF(2168) is represented by 22 bytes, with xP in the leftmost 21 bytes (i.e. in
bits 175-8), and ỹP in bit 0.

Signatures

A signature consists of two integers (c, d) . Each of these integers is 27 bytes long in library EC–211,
and 21 bytes long in libraries EC–167 and EC–161, for a total signature length of 54 or 42 bytes. See
IEEE P1363 for the definitions of c and d.

7.3.9 Conformance Specification
This implementation follows the standard IEEE P1363: Standard Specifications for Public Key
Cryptography. In the terminology of this standard, the following schemes, primitives, and additional
techniques are implemented:

7. System Libraries

118118

Scheme Description Terminal BasicCard
ECKAS-DH1 Elliptic Curve Key Agreement Scheme, Diffie-Hellman

version, where each party contributes one key pair. This
scheme uses primitive ECSVDP-DH, with additional
technique KDF1.

ECSSA Elliptic Curve Signature Scheme with Appendix. This
scheme uses primitives ECSP-NR (in the Terminal and
the BasicCard) and ECSV-NR (in the Terminal only),
and additional technique EMSA1.

Primitive Description Terminal BasicCard
ECSVDP-DH Elliptic Curve Secret Value Derivation Primitive, Diffie-

Hellman version.

ECSP-NR Elliptic Curve Signature Primitive, Nyberg-Rueppel
version.

ECVP-NR Elliptic Curve Verification Primitive, Nyberg-Rueppel
version.

Not
Enhanced
BasicCard

Additional
Technique Description Terminal BasicCard
KDF1 Key Derivation Function. The hash function is SHA–256:

Secure Hash Standard for library EC–211, and SHA–1:
Secure Hash Algorithm Revision 1 for libraries EC–
167 and EC–161.

EMSA1 Encoding Method for Signatures with Appendix. The
hash function is SHA–256: Secure Hash Standard for
library EC–211, and SHA–1: Secure Hash Algorithm
Revision 1 for libraries EC–167 and EC–161.

7.4 The COMPONENT Library
This library is available in the MultiApplication BasicCard, and in the Terminal Program. See Chapter
5: The MultiApplication BasicCard for information on Components. Procedures in the
COMPONENT library report errors via the LibError variable; a list of error codes (beginning ce...)
can be found in COMPONNT.DEF. In Terminal programs, errors are also reported via SW1SW2. The
corresponding error codes can be found in COMMANDS.DEF.

To use the COMPONENT library:

#Include COMPONNT.DEF

The following procedures for handling Security Components are provided:

Sub SelectApplication (filename$)
Select the Application contained in the given file. Execute access to the file is required. See
8.7.21 The SELECT APPLICATION Command for further information.

Sub CreateComponent (type@, name$, attr$, data$)
Create a Component. Write access is required to the parent directory. name$ can be empty, if
an anonymous ACR is being created. The formats of attr$ and data$ depend on the type of the
Component; they are described in 5.8 Component Details. See 8.7.22 The CREATE
COMPONENT Command for further information.

Sub DeleteComponent (CID%)
Delete a Component. Delete access to the Component is required. See 8.7.23 The DELETE
COMPONENT Command for further information.

7.4 The COMPONENT Library

119

Sub WriteComponentAttr (CID%, attr$)
Write a Component’s Attributes. Both Write and Delete access to the Component are
required. The format of attr$ depends on the type of the Component; it is described in 5.8
Component Details. See 8.7.24 The WRITE COMPONENT ATTR Command for further
information.

Function ReadComponentAttr (CID%) As String
Read a Component’s attributes. Read access to the Component’s parent directory is required
(but not Read access to the Component itself). The format of the returned string depends on
the type of the Component; it is described in 5.8 Component Details. See 8.7.25 The READ
COMPONENT ATTR Command for further information.

Sub WriteComponentData (CID%, data$)
Write a Component’s Data. Write access to the Component is required. See 8.7.26 The
WRITE COMPONENT DATA Command for further information.

Function ReadComponentData (CID%) As String
Read a Component’s data. Read access to the Component is required. See 8.7.27 The READ
COMPONENT DATA Command for further information.

Function FindComponent (type@, name$) As Integer
Find a Component of a given type, and return its CID. Just like a filename, name$ can be a
full pathname (beginning with a backslash character) or a relative pathname (relative to the
current directory). Read access is required to all directories in the path (but not to the
Component itself). See 5.1 Components for details. If the Component does not exist,
LibError is set to ceComponentNotFound.
See 8.7.28 The FIND COMPONENT Command for further information.

Function ComponentName (CID%) As String
Return the full pathname of the Component with the given CID. Read access is required to all
directories in the path (but not to the Component itself). See 8.7.29 The COMPONENT
NAME Command for further information.

Sub GrantPrivilege (CID%, filename$)
Grant the Privilege with the given CID to the specified file. Requires Grant access to the
Privilege, and Write access to the file. The Privilege is added to the file’s Rights List. The file
will typically be an Application, although this is not required.
If filename$ is an empty string, the Privilege is granted to the Terminal program, and lasts
until the card is reset. The Terminal program may possess up to three Privileges at once.
See 8.7.30 The GRANT PRIVILEGE Command for further information.

Function AuthenticateFile (KeyCID%, Algorithm@, Filename$, Signature$) As Integer
Authenticate a file with the given Key, using OMAC or EC-167 Elliptic Curve Cryptography.
The Key is added to the file’s Rights List. See 8.7.31 The AUTHENTICATE FILE
Command for further information.

Function ReadRightsList (Filename$, RightsList%()) As Integer
Read the Rights List of the given file into an array. The Rights List contains the CID’s of the
Privileges granted to the file, and the Keys with which the file has been authenticated. See
8.7.32 The READ RIGHTS LIST Command for further information.

Sub LoadSequence (Phase@)
Start or finish a Loader Sequence transaction. Phase@ is equal to LoadSequenceStart,
LoadSequenceEnd, or LoadSequenceAbort (defined in COMPONNT.DEF). If Phase@ is
equal to LoadSequenceAbort, and no LoadSequenceEnd has intervened, then all
Components created since LoadSequenceStart are deleted. See 8.7.33 The LOAD
SEQUENCE Command for further information.

7. System Libraries

120120

Sub SecureTransport (KeyCID%, Algorithm@ , Nonce$)

If KeyCID% is non-zero, start Secure Transport; if KeyCID% is zero, end Secure Transport.
This procedure is available in the Terminal program only. See 8.7.34 The SECURE
TRANSPORT Command for further information.

7.5 The EAX Library
EAX is an algorithm for Authenticated Encryption. See 9.6 The EAX Algorithm for a brief
description of the algorithm; a full description is available from NIST’s web site, at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/. The EAX library is currently available for
the Terminal program, Professional BasicCard ZC5.5, and MultiApplication BasicCard ZC6.5. To use
the EAX library:

#Include EAX.DEF

The EAX algorithm takes the following parameters as input:
• A block cipher algorithm. This implementation uses AES with key length 128, 192, or 256 bits.
• A cryptographic key for use by the block cipher algorithm.
• A Nonce. This is to ensure that subsequent invocations of EAX give different results, even if they

encrypt the same data. The Nonce can be any string, which need not be secret, but should be
different for each invocation.

• A Header. This contains data that is only authenticated, not encrypted.
• A Message. This contains the data to be encrypted and authenticated.

The algorithm encrypts the message, and computes a 16-byte Tag that authenticates the Header and the
Message.

The following procedures are provided:

Function EAXInit (Type%, Key$) As String

This function returns an 87-byte string containing the internal state of the EAX algorithm.
This string must be provided as the first parameter to all the other procedures in the library.
The Type% parameter is the length of the key, in bits; it must be 128, 192, or 256. This
function need only be called once for a given key.

Sub EAXProvideNonce (EaxState As String, Key$, N$)

String N$ contains the Nonce. This can be any string, which need not be secret, but should be
different for each invocation. Call this subroutine once for each invocation of the EAX
algorithm. It must be called before any of the following procedures.

Sub EAXProvideHeader (EaxState As String, Key$, H$)

This subroutine can be called any number of times, to specify successive parts of the Header.
Calls to EAXProvideHeader may be interleaved with calls to EAXComputeCiphertext or
EAXComputePlaintext.

Sub EAXComputeCiphertext (EaxState As String, Key$, M$)

This subroutine can be called any number of times, to specify successive parts of the Message
to be encrypted. The string M$ is encrypted in place. Calls to EAXComputeCiphertext may
be interleaved with calls to EAXProvideHeader.

Sub EAXComputePlaintext (EaxState As String, Key$, M$)

This subroutine can be called any number of times, to specify successive parts of the
encrypted Message. The string M$ is decrypted in place. Calls to EAXComputePlaintext
may be interleaved with calls to EAXProvideHeader.

Function EAXComputeTag (EaxState As String, Key$) As String

Call this function at the end to compute the Tag. A 16-byte string is returned.

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

7.6 The OMAC Library

121

7.6 The OMAC Library
OMAC is an algorithm for Message Authentication. See 9.8 The OMAC Algorithm for a brief
description of the algorithm; a full description is available from NIST’s web site, at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/. The OMAC library is currently available
for the Terminal program, Professional BasicCard ZC5.5, and MultiApplication BasicCard ZC6.5. To
use the OMAC library:

#Include OMAC.DEF

The OMAC algorithm takes the following parameters as input:
• A block cipher algorithm. This implementation uses AES with key length 128, 192, or 256 bits.
• A cryptographic key for use by the block cipher algorithm.
• A Message. This contains the data to be authenticated.

The algorithm computes a 16-byte Tag that authenticates the Message.

The simplest way to calculate the Tag is to use the following function:

Function OMAC (Type%, Key$, Mess$) As String

The Type% parameter is the length of the key, in bits; it must be 128, 192, or 256. This
function computes the Tag for message Mess$ and returns it as a 16-byte string.

If your message is too long to fit into a string, or if you have multiple messages to authenticate and you
want to process them as fast as possible, you can use the incremental procedures:

Function OMACInit (Type%, Key$) As String

This function returns a 34-byte string containing the internal state of the OMAC algorithm.
This string must be provided as the first parameter to the following library procedures. The
Type% parameter is the length of the key, in bits; it must be 128, 192, or 256. This function
need only be called once for a given key.

Sub OMACStart (OmacState As String)

Call this subroutine once for every message, before processing the message data.

Sub OMACAppend (OmacState As String, Key$, Mess$)

Call this subroutine to add Mess$ to the message being authenticated. This subroutine can be
called any number of times, to authenticate a message of any length.

Function OMACEnd (OmacState As String, Key$) As String

This function computes the Tag of the message, returning it as a 16-byte string.

7.7 SHA: The Secure Hash Algorithm Library
This library implements the Secure Hash Algorithms SHA–1 and SHA–256 as defined in the Federal
Information Processing Standards document FIPS 180–2. The algorithms take an arbitrary message as
input, and output a 20-byte hash (SHA–1) or 32-byte hash (SHA–256) of that message. It is supposed
to be computationally infeasible to invert these algorithms. More specifically:

• given a 20- or 32-byte hash, it is computationally infeasible to construct a message with that hash;
• it is computationally infeasible to construct two different messages with identical hashes.

The SHA library was implemented as an adjunct to the RSA and Elliptic Curve libraries. In the first
place, it provides approved hashing algorithms for use in Elliptic Curve digital signature generation;
and in the second place, it provides a source of cryptographically strong pseudo-random numbers, for
the generation of keys and signatures.

However, it can also be used as a stand-alone library. To load this library:

#Include SHA.DEF

The file SHA.DEF is supplied with the distribution kit, in the BasicCardPro\Lib directory.

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

7. System Libraries

122122

The SHA–256 algorithm is new in Version 5.22 of the development software; earlier versions provided
SHA–1 only. SHA–256 procedures are currently available in Terminal programs, Professional
BasicCard ZC5.5 REV H, and MultiApplication BasicCard ZC6.5 REV D. SHA–256 procedure
names begin with Sha256; SHA–1 procedure names begin with Sha.

7.7.1 Hashing Functions
If a message is contained in a String, you can compute its hash with a single function call:

Function ShaHash (S$) As String
Function Sha256Hash (S$) As String

To hash longer messages, you must use the following procedures:

Professional and MultiApplication BasicCards: Other Environments:
Sub ShaStart (HashBuff$)
Sub ShaAppend (HashBuff$, S$)
Function ShaEnd (HashBuff$) As String
Sub Sha256Start (HashBuff$)
Sub Sha256Append (HashBuff$, S$)
Function Sha256End (HashBuff$) As String

Sub ShaStart()
Sub ShaAppend (S$)
Function ShaEnd() As String
Sub Sha256Start()
Sub Sha256Append (S$)
Function Sha256End() As String

Call ShaStart() (resp. Sha256Start()) to initialise the hashing process, then ShaAppend (S$) (resp.
Sha256Append (S$)) for successive blocks of data, and finally ShaEnd() (resp. Sha256End()) to get
the 20-byte (resp. 32-byte) hash value. In the Professional and MultiApplication BasicCards, the
HashBuff$ argument is used to store the internal state of the hash algorithm; other environments have
static buffers for this purpose.

7.7.2 Pseudo-Random Number Generation
The Professional and MultiApplication BasicCards have hardware random number generators; other
environments must generate pseudo-random numbers in software. The Secure Hash Algorithm is one
source of cryptographically strong pseudo-random numbers. To do this properly, it must be fed with
some initial source of random data, for instance user key-strokes (see example program ECTERM in
directory BasicCardPro\Examples\EC).

Sub ShaRandomSeed (Seed$)

This function mixes the given seed into the ‘randomness pool’.

Function ShaRandomHash() As String

This function returns a random string, 32 bytes long in a Terminal program, 20 bytes long in an
Enhanced BasicCard program. Each byte in the string is a random number between 0 and 255
inclusive.

Each time that you call ShaRandomSeed (Seed$) , the seed is mixed into the ‘randomness pool’. The
effect is cumulative, so the more data you mix in, the better. The ZC-Basic interpreter mixes in some
data of its own each time this procedure is called:

• The Terminal program mixes in the date and time, and the elapsed CPU time for the process.

• The Enhanced BasicCard mixes in its unique serial number. So any two cards will generate
different sequences, even if they are fed with the same seeds.

The Enhanced BasicCard has no other internal source of randomness, so you must send it random data
from the Terminal program if cryptographically strong random numbers are required, for instance when
generating key pairs for use by the EC–161 Elliptic Curve Cryptography library.

7.8 IDEA: International Data Encryption Algorithm

123

7.8 IDEA: International Data Encryption Algorithm
The IDEA library implements the International Data Encryption Algorithm, a block cipher with a 128-
bit key size. This algorithm is cryptographically as strong as Triple DES, but is more than three times
as fast. To load this library:

#Include IDEA.DEF

The file IDEA.DEF is supplied with the distribution kit, in the BasicCardPro\Lib directory.

Note: The International Data Encryption Algorithm may be used free of charge for non-commercial
purposes. For commercial use, permission must be obtained from the patent holders:

Ascom Systec Ltd.
Gewerbepark
CH-5506 Maegenwil
Switzerland

Internet: http://www.ascom.com/infosec
e-mail: IDEA@ascom.ch

7.8.1 IDEA Functions
The library privides two functions:

Function IdeaEncrypt (Key$, Data$) As String
Function IdeaDecrypt (Key$, Data$) As String

Key$ The 16-byte cryptographic key.
Data$ The 8-byte data block to be encrypted or decrypted.

Both functions return an 8-byte string.

If Len(Key$) < 16 or Len(Data$) < 8, variable LibError is set to IdeaBadProcParams (&H4301).

The IDEA algorithm can be used in various modes of operation: Electronic Codebook (ECB) mode,
Cipher Feedback (CFB) mode, etc. These modes have been implemented in ZC-Basic in the file
IDEATEST.BAS, in the directory BasicCardPro\Examples\IDEA.

7.9 MATH: Mathematical Functions
The MATH library provides standard mathematical functions such as Exp and Sin. It may only be
used in Terminal programs. To load this library:

#Include MATH.DEF

The file MATH.DEF is supplied with the distribution kit, in the BasicCardPro\Lib directory.

7.9.1 Error Codes
The MATH library procedures can signal the following error codes in LibError:

MathDomain A parameter was outside the valid range, e.g. Log (–1.0)
MathSingularity The function has a singularity at the given point, e.g. Tan (MathPi / 2)
MathOverflow The maximum Single value of 3.402823E+38 was exceeded
MathUnderflow The minimum Single value of 1.401298E–45 was truncated to zero
MathLossOfPrecision Total loss of precision renders the result meaningless, e.g. Sin (1E30)

These constants are defined in MATH.DEF.

7.9.2 Integer Rounding
Function Floor (X!) As Single The largest integer <= X!, as a Single value
Function Ceil (X!) As Single The smallest integer >= X!, as a Single value

http://www.ascom.com/infosec

7. System Libraries

124124

7.9.3 Exponentiation
Function Pow (X!, Y!) As Single X! to the power Y!
Function Exp (X!) As Single e to the power X! (e is the base of natural logarithms)
Function LogE (X!) As Single The natural logarithm of X! (i.e. the logarithm to base e)
Function Log10 (X!) As Single The logarithm of X! to base 10

7.9.4 Trigonometric Functions
Function Hypot (X!, Y!) As Single Sqrt (X! * X! + Y! * Y!) (with no intermediate overflow)
Function Sin (X!) As Single Sine function
Function Cos (X!) As Single Cosine function
Function Tan (X!) As Single Tangent function Tan (X!) = Sin (X!) / Cos (X!)
Function ASin (X!) As Single Inverse Sine function (–ππππ/2 <= ASin (X!) <= ππππ/2)
Function ACos (X!) As Single Inverse Cosine function (0 <= ACos (X!) <= ππππ)
Function ATan (X!) As Single Inverse Tangent function (–ππππ/2 < ATan (X!) < ππππ/2)
Function ATan2 (Y!, X!) As Single Inverse Tangent at (X!, Y!) (–ππππ < ATan2 (Y!, X!) <= ππππ)

7.9.5 Hyperbolic Functions
Function SinH (X!) As Single Hyperbolic Sine: (Exp (X!) – Exp (–X!)) / 2
Function CosH (X!) As Single Hyperbolic Cosine: (Exp (X!) + Exp (–X!)) / 2
Function TanH (X!) As Single Hyperbolic Tangent: SinH (X!) / CosH (X!)

7.9.6 Mathematical Constants
The following constants are defined in MATH.DEF:

Const MathE = 2.718281828 The base e of natural logarithms
Const MathPi = 3.141592654 ππππ

7.10 MISC: Miscellaneous Procedures
The MISC library provides miscellaneous utility procedures. To load this library:

#Include MISC.DEF

The file MISC.DEF is supplied with the distribution kit, in the BasicCardPro\Lib directory. It
contains the following procedures, all of which are defined in more detail below:

For Terminal programs:

Timing Functions Sub GetDateTime (DT As DateTime)
Function TimeInterval (StartTime As DateTime, EndTime As

DateTime) As Long
Function UnixTime() As Long

Suspending the Program Sub Sleep (Milliseconds As Long)
Executing a Command Line Sub Execute (CommandString$)
CRC Calculations Function CRC16 (S$) As Integer

Sub UpdateCRC16 (CRC, S$)
Function CRC32 (S$) As Long
Sub UpdateCRC32 (CRC As Long, S$)

Random String Sub RandomString (S$, Len)
Making a Noise Sub Beep (Frequency, Duration As Long)

For Enhanced BasicCards ZC3.3, ZC3.4, ZC3.5, ZC3.6:

Fast EEPROM Writes Sub FastEepromWrites ()

7.10 MISC: Miscellaneous Procedures

125

For Professional and MultiApplication BasicCards:

Random String Sub RandomString (S$, Len)
Communications Function LePresent()

Sub SuspendSW1SW2Processing()
Hardware Data Function CardSerialNumber() As String
Free Memory Sub GetFreeMemory (Mem As FreeMemoryData)
Power Management Function SetProcessorSpeed (Divider@)

7.10.1 Timing Functions
Three timing procedures are provided, for use in Terminal programs only.

Two of these procedures take parameters of type DateTime, defined in MISC.DEF:

Type DateTime
 Year, Month, Day
 Hour, Minute, Second
 Millisecond
End Type

Sub GetDateTime (DT As DateTime)

Returns the current system date and time in DT.

Note: DT is filled in from the system clock. Under MS-DOS and Windows®, the system clock has a
resolution of about 55 milliseconds, which is rounded to a multiple of 10. So values returned by
GetDateTime will jump in increments of 50 or 60 milliseconds.

Function TimeInterval (StartTime As DateTime, EndTime As DateTime) As Long

Returns the time interval between StartTime and EndTime, in milliseconds. This interval will be a
multiple of the system clock resolution; see note to GetDateTime.

For examples of the use of these procedures, see programs ECINIT.BAS and ECTEST.BAS in
directory BasicCardPro\Examples\EC.

The third timing procedure returns the number of seconds elapsed since 1st January 1970:

Function UnixTime() As Long

7.10.2 Suspending the Program
In a Terminal program, the following subroutine suspends execution for the specified number of
milliseconds:

Sub Sleep (Milliseconds As Long)

This frees the CPU for other processes to use.

7.10.3 Executing a Command Line
An operating system command can be executed from a Terminal program using the Execute
subroutine:

Sub Execute (CommandString$)

The following error codes are returned in the LibError variable:

MiscCommandTooLong Under MS-DOS, the command string was longer than 128 bytes
MiscFileNotFound The command string specified a non-existent executable file
MiscNotExecutable The command string specified a non-executable file
MiscOutOfMemory Insufficient memory to execute the command
MiscUnexpectedError The operating system returned an unexpected error code

These constants are defined in MISC.DEF.

Note that it is not possible to retrieve an error code generated by the command itself.

7. System Libraries

126126

7.10.4 CRC Calculations
Function CRC16 (S$) As Integer Returns the 16-bit CRC of the string S$
Sub UpdateCRC16 (CRC, S$) Allows cumulative calculation of 16-bit CRC’s
Function CRC32 (S$) As Long Returns the 32-bit CRC of the string S$
Sub UpdateCRC32 (CRC As Long, S$) Allows cumulative calculation of 32-bit CRC’s

To calculate the CRC of a single String value, call CRC16 or CRC32. To calculate CRC’s for larger
amounts of data, first initialise CRC to zero, then call UpdateCRC16 or UpdateCRC32 with
successive values of S$.

Here are ‘C’ functions to calculate the 16-bit and 32-bit CRC’s:

unsigned short CRC16 (unsigned char *p, unsigned int len)
{
unsigned short crc = 0 ;
while (len--)

{
unsigned char NextByte = *p++ ;
int i ;
for (i = 0 ; i < 8 ; i++, NextByte >>= 1)

{
if ((crc ^ NextByte) & 1)

{
crc >>= 1 ;
crc ^= 0xCA00 ;
}

else crc >>= 1 ;
}

}
return crc ;
}

unsigned long CRC32 (unsigned char *p, unsigned int len)
{
unsigned long crc = 0 ;
while (len--)

{
unsigned char NextByte = *p++ ;
int i ;
for (i = 0 ; i < 8 ; i++, NextByte >>= 1)

{
if ((crc ^ NextByte) & 1)

{
crc >>= 1 ;
crc ^= 0xA3000000 ;
}

else crc >>= 1 ;
}

}
return crc ;
}

7.10.5 Making a Noise
The Terminal program can generate an audible beep with the Beep subroutine:

Sub Beep (Frequency, Duration As Long)

The duration is in milliseconds.

Note: The Frequency and Duration parameters are only effective under Windows® NT, Windows®

2000, and later systems; they are ignored under Windows® 98 (although they must be present).

7.10 MISC: Miscellaneous Procedures

127

7.10.6 Fast EEPROM Writes
The EEPROM in the Enhanced BasicCard has an erase/write cycle time of 6 milliseconds – it takes this
long to guarantee that each bit has been completeley discharged and/or recharged. The BasicCard has
no internal clock, so it must count instruction cycles to estimate the elapsed time. However, it has no
way of knowing the clock frequency, so it must assume the worst case – it must assume that the clock
is running at its maximum allowed speed. This maximum speed is specified in standard ISO/IEC 7816-
3 as 5 MHz.

If the card reader is generating a slower clock frequency, then EEPROM writes will take longer than
they need to. For instance, most readers (including ZeitControl’s Chip-X and CyberMouse card
reader) generate a clock frequency of 3.57 MHz; so instead of 6 milliseconds, an EEPROM write takes
8.4 milliseconds. If speed is important to you, and if you know that the clock frequency is only 3.57
MHz (or less), you can call the following procedure:

Sub FastEepromWrites()

The BasicCard operating system will then speed up its EEPROM writes, so that they take 6
milliseconds at the assumed slower clock speed. This procedure is available for Enhanced BasicCards
ZC3.3, ZC3.4, ZC3.5, and ZC3.6.

Warning: If in fact the card reader is running at faster than 3.57 MHz, calling this procedure may result
in subsequent loss of EEPROM data through charge leakage.

7.10.7 Random String
In the Terminal program and in all current Professional BasicCards, a String variable can be filled with
random data:

Sub RandomString (S$, Len)

On return, S$ contains Len bytes of random data.

7.10.8 SW1-SW2 Processing
Normally, if SW1-SW2 <> &H9000, and SW1 <> &H61, then ODATA is not sent – see 8.5
Commands and Responses. You can override this behaviour in some BasicCards with the following
procedure call:

Sub SuspendSW1SW2Processing()

The card will then send the ODATA field in the response, regardless of the value of SW1-SW2. This
procedure only affects the current command. See 3.3.4 The #Pragma Directive for an alternative
method.

At the time of writing, this procedure is available in Professional BasicCards ZC4.5A (from Revision
D), ZC4.5D (from Revision D), and ZC5.5 (all revisions), and in MultiApplication BasicCard ZC6.5.

7.10.9 Card Serial Number
In Professional and MultiApplication BasicCards, the card’s unique Serial Number is available as an 8-
byte string:

Function CardSerialNumber() As String

This is the same number that is returned by the GET APPLICATION ID command when P2 = 3 – see
8.7.10 The GET APPLICATION ID Command.

7.10.10 Free Memory
In the MultiApplication BasicCard, you can find out the state of the various memory allocation heaps:

Sub GetFreeMemory (Mem As FreeMemoryData)

 For each heap, the total free memory and the size of the largest free block are returned in a HeapData
structure:

7. System Libraries

128128

Type HeapData
TotalFreeMemory%
LargestFreeBlock%

End Type

Type FreeMemoryData
RamHeapData As HeapData
AppFileHeapData As HeapData
EepromHeapData As HeapData

End Type

See 5.2.4 Memory Allocation for more information on heaps in the MultiApplication BasicCard.

7.10.11 Power Management
The new high-performance chips used in the latest Professional and MultiApplication BasicCards run
more than twice as fast as previous versions. However, they require more power, which may be a
disadvantage for certain applications. So you can slow the processor down to reduce power
consumption:

Function SetProcessorSpeed (Divider@) As Byte

The higher the value of Divider@ , the slower the processor speed. The function returns the previous
value of Divider@.

Divider@ is rounded down to the nearest value that is supported by the processor. The set of supported
values depends on the hardware. Current BasicCards provide the following options:

ZC5.4 REV H 1 <= Divider@ <= 16
ZC5.5 REV H Divider@ = 1, 2, 4, or 8
ZC6.5 REV D Divider@ = 1, 2, 4, or 8

Whatever the range of supported values, SetProcessorSpeed (1) sets the maximum processor speed,
and SetProcessorSpeed (255) sets the minimum processor speed. SetProcessorSpeed (0) does
nothing, but returns the current value.

Part II

Technical Reference

130

8. Communications
Note: Throughout this chapter, bold numbers are hexadecimal.

8.1 Overview
As outlined in 1.1 Processor Cards, communication between a Terminal and a Processor Card
proceeds, via a Card Reader, as a series of Commands (initiated by the Terminal) and Responses (sent
by the Processor Card). The series starts with the Card Reader sending a Reset Card signal to the
Processor Card:

Terminal Card Reader Processor Card

Reset Card

Answer To Reset (ATR)

Command

Response

Command

Response

etc.

Two documents describe this process in detail:

1. ISO/IEC 7816-3: Electronic signals and transmission protocols

This document describes the communication between the Card Reader and the Processor Card, from
the bit level through the byte level to the block level. We will be concerned with three aspects:

• the structure of the ATR;
• the T=0 character transmission protocol;
• the T=1 block transmission protocol.

2. ISO/IEC 7816-4: Interindustry commands for interchange

This document describes Commands and Responses. We will be concerned with three aspects:

• the contents of Commands and Responses;
• the method by which the T=0 protocol transmits Commands and Responses;
• the method by which the T=1 protocol transmits Commands and Responses.

We provide a summary of these documents in the following sections. Most readers can skip these
sections; they are provided mainly for users who need to program the BasicCard to be compatible with
existing systems.

In these documents, a Command or Response is referred to as an APDU (application protocol data
unit). The structure of Command and Response APDU’s is described in 8.5 Commands and
Responses.

8.2 Answer To Reset
With the Answer To Reset (ATR), the Processor Card identifies itself and indicates which protocols it
supports. Most of the data in the ATR is not relevant to a BasicCard programmer. The following
information is important:

8.3 The T=0 Protocol

131

• whether the card supports the T=0 and/or the T=1 protocols;
• the maximum communication speed that the card allows;
• the Historical Characters.

The Compact and Enhanced BasicCards support only the T=1 protocol, at 9600 baud. They send the
following ATR (the byte names are from ISO/IEC):

TS T0 TB1 TC1 TD1 TD2 TA3 TB3 T1-TK
3B EF 00 FF 81 31 50 or 20 45 or 75 ‘BasicCard ZCvvv’

Briefly, what this means is:

TS = 3B Direct convention (high = 1, low = 0; least significant bit arrives first)
T0 = EF E → TB1, TC1, TD1 follow; F → 15 historical characters
TB1 = 00 No EEPROM programming voltage required
TC1 = FF Waiting time between two characters = 11 ETU
TD1 = 81 TD2 follows (T=1 indication)
TD2 = 31 TA3, TB3 follow (T=1 indication)
TA3 = 50 or 20 IFSC (Information Field Size) = &H50 in Compact card, &H20 in Enhanced card
TB3 = 45 or 75 CWT (character waiting time) = (11 + 32) ETU (= 3.33 ms between characters)

In ZC1.1, ZC3.3, and ZC3.5 cards (TB3 = 45):
BWT (block waiting time) = (11 + 16*960) ETU (= 1.6 seconds between blocks)
In later cards (TB3 = 75):
BWT (block waiting time) = (11 + 128*960) ETU (= 12.8 seconds between blocks)

T1-TK The historical characters (vvv is the BasicCard firmware version number)

An ETU (elementary time unit) is one bit, or 372 clock cycles. The timing figures assume a clock
frequency of 3.57 MHz. Historical characters T1-TK can be configured in ZC-Basic with the Declare
ATR statement; the whole of the ATR can be specified with Declare Binary ATR – see 3.20.1
Customised ATR.

The Professional BasicCards are more flexible in their capabilities; they support the T=0 protocol as
well as the T=1 protocol, and they can run at up to 38400 baud. Here is a typical ATR (from the
Professional BasicCard “ZC4.5D REV C”):

TS T0 TA1 TB1 TC1 TD1 TC2 T1-TK
3B FC 13 00 FF 40 80 ‘ZC4.5D REV C’

TS = 3B Direct convention (high = 1, low = 0; most significant bit arrives first)
T0 = FC F → TA1, TB1, TC1, TD1 follow; C → 12 historical characters
TA1 = 13 FI = 1; DI = 3 →→→→ maximum allowed communication speed = 38400 baud
TB1 = 00 No EEPROM programming voltage required
TC1 = FF Waiting time between two characters = 11 ETU
TD1 = 40 TC2 follows (T=0 indication)
TC2 = 80 WI = 128 → WWT (work waiting time) = 12.8 seconds

More examples are available in the file BasicCardPro\Inc\ATRList.Def, supplied with the
distribution kit. This file contains the ATR of every currently available BasicCard.

8.3 The T=0 Protocol
The T=0 protocol is a character-level transmission protocol for integrated circuit cards with contacts,
defined in the document ISO/IEC 7816-3: Electronic signals and transmission protocols. Some
Professional BasicCards support the T=0 protocol, as well as the T=1 protocol described in the next
section. T=1 is faster, easier to use, and less error-prone; you should only use the T=0 protocol if you
are implementing a pre-existing T=0 command set, or you need to use card readers that don’t support
the T=1 protocol.

The T=0 protocol is defined as a sequence of messages exchanged between the IFD (interface device)
and the ICC (integrated circuit card). In the present context, the IFD is the Terminal program, and the

8. Communications

132132

ICC is the BasicCard. The exchange begins when the ICC is powered up and responds with an ATR
(Answer To Reset). Thereafter the IFD sends a TPDU (transmission protocol data unit) containing a
Command, and the ICC replies with a TPDU containing the Response. A TPDU is a lower-level
object than an APDU; we will see later how APDU’s are constructed from TPDU’s.

8.3.1 TPDU Transmission
When the IFD sends a Command TPDU and the ICC replies with a response TPDU, only one of the
two TPDU’s may contain data. If the Command TPDU contains data, it is an incoming data transfer; if
the Response TPDU contains data, it is an outgoing data transfer. The T=0 protocol does not provide
any mechanism for specifying which of the two TPDU’s may contain data; and in fact the protocol
grinds to a halt if the IFD and ICC don’t agree on the direction of data transfer.

In both cases, the IFD first sends a 5-byte command header:

CLA INS P1 P2 P3 �

CLA Class byte – first byte of two-byte CLA INS command identifier. This byte may not
be FF.

INS Instruction byte – second byte of two-byte CLA INS command identifier. INS must
be even, and the top nibble may not be 6 or 9.

P1 Parameter 1 of 4-byte CLA INS P1 P2 command header.
P2 Parameter 2 of 4-byte CLA INS P1 P2 command header.
P3 Number of data bytes.

From the command header, the ICC must be able to determine whether the IFD expects an incoming
or outgoing data transfer.

Incoming Data Transfer

Command TPDU: CLA INS P1 P2 P3 D1 ... DP3

Response TPDU: SW1 SW2

The ICC acknowledges the 5-byte command header by echoing the INS byte (more variations are
described in the ISO/IEC document, but the BasicCard does not use them):

� INS

The IFD then sends P3 bytes of data:

D1 ... DP3 �

The ICC responds with a two-byte status code:

� SW1 SW2

where the top nibble of SW1 is 6 or 9 (but SW1=60 is not allowed). Status codes are described in 8.6
Status Bytes SW1 and SW2.

Outgoing Data Transfer

Command TPDU: CLA INS P1 P2 P3

Response TPDU: D1 ... DP3 SW1 SW2

8.3 The T=0 Protocol

133

The ICC acknowledges the 5-byte command header by echoing the INS byte, and then sends P3 data
bytes, followed by a two-byte status code:

� INS D1 ... DP3 SW1 SW2

In both cases, the ICC may reject the command by responding immediately with SW1-SW2 instead of
echoing INS.

If the WWT work waiting time is exceeded, the IFD will time out. The ICC can restart the timer, and
so delay the time out, by sending a NULL (60) byte. In a BasicCard program, this is done with the
WTX statement:

WTX n

The ZC-Basic syntax requires the parameter n, although it is ignored if the card is using T=0 protocol.

8.3.2 APDU Transmission by T=0
This section describes the methods defined by ISO/IEC for implementing APDU exchanges under
T=0. If you are not familiar with the structure of Command and Response APDU’s, you should read
8.5 Commands and Responses before continuing.

There are four cases to consider. We adhere to the notation in ISO/IEC 7816-4: Interindustry
commands for interchange, Annex A (normative): Transportation of APDU messages by T=0:

Case 1: Lc=0, and Le not present: no incoming data, and no outgoing data
Case 2: Lc=0, and Le present: outgoing data only
Case 3: Lc non-zero, and Le not present: incoming data only
Case 4: Lc non-zero, and Le present: incoming and outgoing data

8.3.3 Case 1: No Incoming Data or Outgoing Data
The Command TPDU consists of the Command APDU with P3=0 appended:

Command APDU: CLA INS P1 P2

Command TPDU: CLA INS P1 P2 P3=0

Response TPDU: SW1 SW2

Response APDU: SW1 SW2

8.3.4 Case 2: Outgoing Data Only
Case 2S.1 – Le accepted

If the ICC accepts the value of Le supplied by the IFD, the Command and Response TPDU are
identical to the Command and Response APDU:

Command APDU: CLA INS P1 P2 Le

Command TPDU: CLA INS P1 P2 P3=Le

Response TPDU: D1 ... DP3 SW1 SW2

Response APDU: D1 ... DLe SW1 SW2

8. Communications

134134

Case 2S.2 – Le definitely not accepted

If the ICC does not accept Le, and does not want to suggest an alternative, it replies with
SW1-SW2=6700:

Command APDU: CLA INS P1 P2 Le

Command TPDU: CLA INS P1 P2 P3=Le

Response TPDU: 67 00

Response APDU: 67 00

Case 2S.3 – Le not accepted, La indicated

If the ICC does not accept Le, and has an alternatve La to suggest, it responds with SW1-SW2 = 6C
La, and the IFD can re-issue the command to receive the outgoing data:

Command APDU: CLA INS P1 P2 Le

Command TPDU: CLA INS P1 P2 P3=Le

Response TPDU: 6C La

Command TPDU: CLA INS P1 P2 P3=La

Response TPDU: D1 ... DLa SW1 SW2

Response APDU: D1 ... DLa 61 La

Case 2S.4 – Command not accepted

Command APDU: CLA INS P1 P2 Le

Command TPDU: CLA INS P1 P2 P3=Le

Response TPDU: SW1 SW2

Response APDU: SW1 SW2

with SW1=6X except 6C, or SW1-SW2=9XXX except 9000.

8.3 The T=0 Protocol

135

8.3.5 Case 3: Incoming Data Only
The Command and Response TPDU are identical to the Command and Response APDU:

Command APDU: CLA INS P1 P2 Lc D1 ... DLc

Command TPDU: CLA INS P1 P2 P3=Lc D1 ... DP3

Response TPDU: SW1 SW2

Response APDU: SW1 SW2

8.3.6 Case 4: Incoming and Outgoing Data

The Command TPDU is identical to the Command APDU, but with Le removed:

Command APDU: CLA INS P1 P2 Lc D1 ... DLc Le

Command TPDU: CLA INS P1 P2 P3=Lc D1 ... DP3

Depending on the response, the IFD may issue a GET RESPONSE Command to request the outgoing
data. This command has INS=C0, P1=0, P2=0, but the ISO/IEC document leaves the CLA byte
unspecified. ZeitControl’s Terminal software (the IFC) uses CLA=0; the BasicCard operating system
accepts any value for CLA that is not a user-defined command.

Case 4S.1 – Command not accepted

Response TPDU: SW1 SW2

Response APDU: SW1 SW2

with SW1=6X except 61, or SW1-SW2=9XXX except 9000.

Case 4S.2 – Command accepted

Response TPDU: 90 00

The IFD issues a GET RESPONSE Command:

Command TPDU: CLA=00 INS=C0 P1=00 P2=00 P3=Le

Transmission then proceeds as in Case 2.

Case 4S.3 – Command accepted with information added

The ICC accepts the command, and indicates that Lx bytes of outgoing data are available:

Response TPDU: 61 Lx

The IFD issues a GET RESPONSE Command, with P3=min(Le,Lx):

Command TPDU: CLA=00 INS=C0 P1=00 P2=00 P3

Transmission then proceeds as in Case 2.

8. Communications

136136

8.4 The T=1 Protocol
The T=1 protocol is a block-level transmission protocol for integrated circuit cards with contacts,
defined in the document ISO/IEC 7816-3: Electronic signals and transmission protocols. The
BasicCard contains a full implementation of this T=1 standard, including NAD awareness, chaining,
retries, WTX requests, and IFS requests. This section describes those parts of the T=1 protocol that a
programmer of the BasicCard might want to know: (i) the error-free transmission of I-blocks; (ii) the
WTX request. The mechanisms for chaining, error handling, and IFS adjustment are hidden from the
programmer, and are not described here. For a detailed definition of the T=1 protocol, see document
ISO/IEC 7816-3.

8.4.1 APDU Transmission by T=1
The T=1 protocol is defined as a sequence of messages exchanged between the IFD (interface device)
and the ICC (integrated circuit card). In the present context, the IFD is the Terminal program, and the
ICC is the BasicCard. The exchange begins when the ICC is powered up and responds with an ATR
(Answer To Reset). Thereafter the IFD sends an APDU containing a Command, and the ICC replies
with an APDU containing the Response. In between receiving a command and sending its response, the
ICC may transmit a WTX request (waiting time extension), to ask for more time:

IFD ICC

���� ATR
Command APDU �

� Response APDU
Command APDU �

� WTX request
WTX response �

� Response APDU
. . .

Each APDU is transmitted in one or more I-blocks. An I-block is the fundamental unit of transmission
in the T=1 protocol; successive I-blocks are chained together to produce the Command and Response
APDU’s. In the following example, APDU is the concatenation of INF1 , INF2 , and INF3 :

IFD ICC

Chained I-block containing INF1 �

� Request for next I-block
Chained I-block containing INF2 �

� Request for next I-block
Unchained I-block containing INF3 �

The maximum allowed length of an I-block depends on the direction of transmission, and on protocol
parameters that can vary dynamically; it is typically 32-128 bytes.

8.4.2 Structure of an I-block
An I-block contains the following fields. All fields are one byte, except the INF:

I-block: NAD PCB LEN INF LRC

NAD Node Address byte. The low nibble contains the Node Address (0-7) of the sender,
and the high nibble contains the Node Address (0-7) of the intended recipient. The
BasicCard responds to all Node Address values, unless otherwise instructed with the
pre-defined ASSIGN NAD command. The NAD of the response I-block is equal to
the NAD of the command I-block with the high and low nibbles reversed.

PCB Protocol control byte. Alternates between 00 and 40 (unless chaining is in progress).
The BasicCard programmer can ignore this byte.

8.5 Commands and Responses

137

LEN The length of the INF field in bytes.

INF Information field – the information content of the I-block. The T=1 protocol says
nothing about the internal format of the INF field.

LRC Longitudinal redundancy check. A simple Xor of all the preceding bytes.

8.4.3 WTX Request
The BWT (block waiting time) defined in the ATR tells the IFD how long to wait for a response
before timing out. The BasicCard ATR defines a BWT of 1.6 seconds (BasicCard versions ZC1.1,
ZC3.3, and ZC3.5), or 12.8 seconds (all other BasicCards). If a command is going to take longer than
this, it must request more time using a WTX (waiting time extension) request. In ZC-Basic, this takes
the form

WTX BWT-units

BWT-units A Byte expression, giving the requested time in multiples of the BWT. WTX
requests are not cumulative; the time allowed is counted from the time of the request,
and cancels any previous WTX requests.

A WTX request contains the following fields:

WTX request: NAD PCB=C3 LEN=01 INF LRC

The INF field has length 1, and contains the value BWT-units. The response to this request contains an
identical INF field:

WTX response: NAD PCB=E3 LEN=01 INF LRC

8.5 Commands and Responses

This section describes the contents of commands and responses, as defined in the document ISO/IEC
7816-4: Interindustry commands for interchange. The APDU of a command has the following structure
(shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

CLA Class byte – first byte of two-byte CLA INS command identifier. If the T=0 protocol
is used, this byte may not be FF.

INS Instruction byte – second byte of two-byte CLA INS command identifier. For ISO
compatibility, this byte should be even. If the T=0 protocol is used, the top nibble
may not be 6 or 9.

P1 Parameter 1 of 4-byte CLA INS P1 P2 command header.
P2 Parameter 2 of 4-byte CLA INS P1 P2 command header.
Lc Length of IDATA field in command.
IDATA Data expected by command. In the case of a ZC-Basic command, this field contains

the parameters passed by the caller.
Le Expected length of ODATA field in response (supplied by caller).

In the BasicCard, CLA and INS can refer to pre-defined commands (all of which have CLA=C0) or
ZC-Basic commands (CLA and INS are specified by the programmer for each command). P1 and P2
are retained in the BasicCard for ISO compatibility; you can use them if you like, or ignore them. If
you want to use them, the parameters passed to you by the caller are available as Public Byte variables
P1 and P2; and you can specify their values in commands that you call using the PreSpec field
described in 3.14.3 Calling a Command:

Call command-name ([P1=expr,] [P2=expr,] arg-list)

8. Communications

138138

The APDU of a response has the following structure (the shaded block is optional):

ODATA SW1 SW2

ODATA Data returned by command. In the case of a ZC-Basic command, this field contains
the parameters that were passed by the caller, as modified by the called command.

SW1 First status byte.
SW2 Second status byte.

SW1 and SW2 are pre-defined Public variables of type Byte. Before a command is executed, they
have the values &H90 and &H00, which is a standard status code meaning “Command successfully
completed”. If you want to return an error code to the caller, just set SW1 and SW2 to the appropriate
values before you exit the command.

Notes:

• if SW1-SW2 <> &H9000, and SW1 <> &H61, then ODATA is discarded: any return values are
lost. In some Professional BasicCards, you can override this behaviour – see 3.3.4 The #Pragma
Directive and 7.10.8 SW1-SW2 Processing.

• in a card using the T=0 protocol, the high nibble of SW1 must be 6 or 9.

8.6 Status Bytes SW1 and SW2

8.6.1 BasicCard Operating System
The following status codes are returned by the BasicCard operating system (codes marked with * are
returned by the MultiApplication BasicCard only):

swCommandOK 9000 Command successfully completed.

sw1LeWarning 61XX Command successfully completed, but Le was not equal to XX.

swRetriesRemaining 63CX A command was wrongly encrypted, and the error counter for
the active key has been decremented to X. If X reaches zero, the
key is disabled.

sw1PCodeError 64XX P-Code error XX occurred in the BasicCard. (The P-Code error
codes are described in the next section.)

swEepromWriteError 6581 A write to EEPROM failed. (This is a hardware error.)

swBadEepromHeap 6582 The EEPROM heap is in an inconsistent state.

swBadFileChain 6583 The BasicCard File System is in an inconsistent state.

swKeyNotFound 6611 The key specified in a START ENCRYPTION command was
not configured with a Declare Key statement in the BasicCard
program.

swPolyNotFound 6612 The SG-LFSR algorithm was specified in a START
ENCRYPTION command, but primitive polynomials were not
configured with a Declare Polynomials statement in the
BasicCard program.

swKeyTooShort 6613 The cryptographic key specified in a START ENCRYPTION
command was too short for the algorithm. All algorithms
require at least 8-byte keys; the Triple DES algorithm requires
16-byte keys.

swKeyDisabled 6614 The active key has been disabled, either explicitly with a
Disable Key statement, or automatically when its error counter
reached zero.

8.6 Status Bytes SW1 and SW2

139

swUnknownAlgorithm 6615 Parameter P1 in a START ENCRYPTION command does not
specify a valid algorithm.

swAlreadyEncrypting 66C0 A START ENCRYPTION command was received while
encryption was already active.

swNotEncrypting 66C1 An END ENCRYPTION command was received while
encryption was not active.

swBadCommandCRC 66C2 The active encryption algorithm is SG_LFSR with CRC, and
the CRC in a command was invalid.

swDesCheckError 66C3 The active encryption algorithm is Single DES or Triple DES,
and the authentication bytes in a command were invalid.

swCoprocessorError 66C4 The Crypto-Coprocessor has reported an internal error.

swAesCheckError 66C5 The active encryption algorithm is AES, and the authentication
bytes in a command were invalid.

*swBadSignature 66C6 An AUTHENTICATE FILE command contained an invalid
signature.

*swBadAuthenticate 66C7 Invalid VERIFY or EXTERNAL AUTHENTICATE
command.

swLcLeError 6700 Either Lc has an unexpected value; or Le is absent when it
should be present, or present when it should be absent.

swCommandTooLong 6781 A command will not fit in the command buffer. In the Compact
BasicCard, this is the same size as the P-Code stack; in the
Enhanced BasicCard, it is 256 bytes. (In state LOAD, other
limits may apply, but the software support package handles this
case.)

swResponseTooLong 6782 The response from the card is too long to be sent.

swInvalidState 6985 A built-in command was called, but the state of the BasicCard
is invalid for the command.

swCardUnconfigured 6986 The card has not been configured by ZeitControl.

swNewStateError 6987 The state of the BasicCard has been changed with a SET
STATE command. After a SET STATE command, the
BasicCard must be reset before it will accept any furhter
commands.

*swBadComponentName 69C0 A Component name contained an invalid character.

*swComponentNotFound 69C1 A Component was not found in the BasicCard.

*swAccessDenied 69C2 The required access conditions were not satisfied.

*swComponentAlreadyExists 69C3 A Component with the given name already exists.

*swBadComponentChain 69C4 The card’s internal Component chain has become corrupted.
Contact ZeitControl for assistance.

*swNameTooLong 69C5 The full path name of the Component is longer than 254
characters.

*swOutOfMemory 69C6 The BasicCard has insufficient free memory to execute the
command.

*swInvalidACR 69C7 An ACR has an unrecognised type.

*swBadComponentType 69C8 A Component is not of the required type.

*swKeyUsage 69CD Current usage not enabled in Key’s Usage attribute.

*swKeyAlgorithm 69CE Current algorithm not enabled in Key’s Algorithm attribute.

8. Communications

140140

*swTooManyTempFlags 69D0 The limit of 64 temporary Flags has been reached.

*swExecutableAcrDenied 69D1 The Application file does not satisfy the “\Executable” ACR.

*swApplicationNotFound 69D2 Application file not found.

*swACRDepth 69D3 Compound ACR’s can be nested to a limit of at most 5 levels.

*swBadComponentAttr 69D4 Attempt to write invalid Component Attributes.

*swBadComponentData 69D5 Attempt to write invalid Component Data.

*swBadAppFile 69D6 The file is not a valid Application file.

*swLoadSequenceActive 69D7 Attempt to activate LoadSequence or delete a Component when
LoadSequence is already active.

*swLoadSequenceNotActive 69D8 Attempt to close or abort a non-existent LoadSequence.

*swLoadSequencePhase 69D9 Invalid Phase parameter to LoadSequence command.

*swBadEaxTag 69DC Invalid EAX tag received during Secure Transport.

*swSecureTransportActive 69DD Attempt to activate Secure Transport when already active.

*swSecureTransportInactive 69DE Attempt to close non-existent Secure Transport session.

*swComponentReferenced 69DF Attempt to delete a Component referenced by another
Component.

swP1P2Error 6A00 P1 or P2 is invalid for the command.

swOutsideEeprom 6A02 An invalid address was passed in P1P2 to one of the built-in
EEPROM access commands.

swDataNotFound 6A88 The built-in command GET APPLICATION ID returns this
error code if no Application ID was configured in the
BasicCard.

sw1LaWarning 6CXX Command successfully completed, but La was not equal to XX.

swINSNotFound 6D00 The INS byte of the command was not recognised (although the
CLA byte was valid).

swCLANotFound 6E00 The CLA byte of the command was not recognised.

swInternalError 6F00 An unexpected error condition was detected.

8.6.2 BasicCard P-Code Interpreter
If the P-Code interpreter in the BasicCard detects an error, it returns sw1PCodeError (64) in SW1,
and the specific P-Code error in SW2. The P-Code error is one of the following:

pcStackOverflow 01 The P-Code stack has grown beyond its comfigured size.

pcDivideByZero 02 A division by zero (or a Mod with zero divisor) occurred.

pcNotImplemented 03 An unimplemented P-Code instruction was executed (e.g. a
floating-point instruction in the Compact BasicCard).

pcBadRamHeap 04 Corruption of RAM has left the heap in an inconsistent state.

pcBadEepromHeap 05 Corruption of EEPROM has left the heap in an inconsistent state.

pcReturnWithoutGoSub 06 A Return statement was executed with no corresponding GoSub.

pcBadSubscript 07 One of the subscripts in an array access was out of bounds.

pcBadBounds 08 One of the array subscript bounds in a ReDim statement was out
of range.

pcInvalidReal 09 A floating-point operand was not a valid IEEE-format number.

8.6 Status Bytes SW1 and SW2

141

pcOverflow 0A The result of an arithmetic operation was too large or small for the
destination.

pcNegativeSqrt 0B An attempt was made to take the square root of a negative number.

pcDimensionError 0C An array parameter did not have the expected number of
dimensions.

pcBadStringCall 0D An invalid parameter was passed to a string function.

pcOutOfMemory 0E There was not enough free memory left to complete the
instruction.

pcArrayNotDynamic 0F The array parameter in a ReDim statement was not Dynamic.

pcArrayTooBig 10 The array size requested in a ReDim statement was too large.

pcDeletedArray 11 An attempt was made to access an element of a deleted array.

pcPCodeDisabled 12 A previous P-Code error has disabled the BasicCard. The card
must be reset before it can execute P-Code again.

pcBadSystemCall 13 A SYSTEM instruction had an invalid sub-function code.

pcBadKey 14 An invalid key number was passed to a cryptographic function.

pcBadLibraryCall 15 An invalid Plug-In Library function was called.

pcStackUnderflow 16 The P-Code stack has shrunk to a negative size.

8.6.3 Terminal P-Code Interpreter
The P-Code interpreter in the Terminal program can return the following status codes in SW1-SW2:

swNoCardReader 6790 No card reader detected on the given COM port.

swCardReaderError 6791 An invalid reply was received to a card reader command.

swNoCardInReader 6792 No card is inserted in the card reader.

swCardPulled 6793 The card has been removed from the card reader.

swT1Error 6794 An unrecoverable T=1 protocol error occurred while
communicating with the card.

swCardError 6795 An invalid response was received to a BasicCard command.

swCardNotReset 6796 The card has not been reset. A BasicCard must be reset before
the Terminal program can send it any commands.

swKeyNotLoaded 6797 The key specified in a START ENCRYPTION command is
unknown to the Terminal program.

swPolyNotLoaded 6798 The SG-LFSR algorithm was specified in a START
ENCRYPTION command, but primitive polynomials have
not been configured in the Terminal program.

swBadResponseCRC 6799 The active encryption algorithm is SG_LFSR with CRC, and
the CRC in a response was invalid.

swCardTimedOut 679A The card did not respond within the time allowed.

swTermOutOfMemory 679B The Terminal program has insufficient free memory to process
the response.

swBadDesResponse 679C The active encryption algorithm is Single DES or Triple DES,
and the authentication bytes in a response were invalid.

swInvalidComPort 679D The COM port is not in the range 1-4.

swNoPcscDriver 679F No PC/SC driver is installed on the PC.

swPcscReaderBusy 67A0 The PC/SC reader is busy.

8. Communications

142142

swPcscError 67A1 An unexpected PC/SC error occurred.

swComPortBusy 67A2 Another process is using the COM port.

swBadATR 67A3 The BasicCard returned an invalid ATR.

swT0Error 67A4 A T=0 protocol error occurred.

swPTSError 67A7 An error occurred during Protocol Type Selection.

swDataOverrun 67A8 The Terminal has lost characters sent by the card reader.

swBadAesResponse 67A9 The active encryption algorithm is AES, and the authentication
bytes in a response were invalid.

swReservedINS 6D80 An attempt was made to send a forbidden INS in T=0 protocol.

swReservedCLA 6E80 An attempt was made to send CLA=FF in T=0 protocol.

8.7 Pre-Defined Commands

8.7.1 States of the BasicCard
The Compact and Enhanced BasicCards have four states:

NEW: The card is in state NEW before ZeitControl configures it.

LOAD: The card is in state LOAD when the application developer gets it.

TEST: State TEST lets the application developer test software in the card.

RUN: The card is in state RUN when it is issued to the end user.

The Professional BasicCard has five states:

NEW: The card is in state NEW before ZeitControl configures it.

LOAD: The card is in state LOAD when the application developer gets it.

PERS: State PERS is for initialising the file system: files can be created and
accessed by anybody, but ZC-Basic code cannot be run.

TEST: State TEST lets the application developer test software in the card.

RUN: The card is in state RUN when it is issued to the end user.

The card can be switched between LOAD, PERS, and TEST any number of times, but the RUN state
is permanent. Once the card is switched to state RUN, it can’t be re-programmed.

The MultiApplication BasicCard has the same five states as the Professional BasicCard:

NEW: The card is in state NEW before ZeitControl configures it.

LOAD: Reserved to ZeitControl for EEPROM initialisation.

PERS: In state PERS, everybody has access to all Components, and the CLEAR
EEPROM command is enabled.

TEST: State TEST is identical to state RUN, except that the card can be switched
back to state PERS.

RUN: The card is in state RUN when it is issued to the end user. This state is
permanent.

In the MultiApplication BasicCard, state LOAD is normally only available to ZeitControl; the card will
usually be in state PERS when the application developer gets it, and can only be switched between
states PERS, TEST, and RUN. Contact our Sales department if you need to write directly to EEPROM
in state LOAD.

8.7 Pre-Defined Commands

143

8.7.2 Pre-Defined Commands – a Summary

Single-Application BasicCards

The operating system in a single-application BasicCard contains twelve or thirteen pre-defined
commands. All commands have class byte CLA = C0. The INS byte takes the values 00, 02, 04, . . . ,
16, 18, as follows:

GET STATE 00 Get the state and version of the card

EEPROM SIZE 02 Get the address and length of EEPROM

CLEAR EEPROM 04 Set specified bytes to FF

WRITE EEPROM 06 Load data into EEPROM

READ EEPROM 08 Read data from EEPROM

EEPROM CRC 0A Calculate CRC over a specified EEPROM address range

SET STATE 0C Set the state of the card

GET APPLICATION ID 0E Get the Application ID string

START ENCRYPTION 10 Start automatic encryption of command/response data

END ENCRYPTION 12 End automatic encryption

ECHO 14 Echo the command data

ASSIGN NAD 16 Assign a Node Address to the card (Compact and Enhanced BasicCards only)

FILE IO 18 Execute a file system operation

Most of these commands are enabled only when the BasicCard is in an appropriate state. The following
table summarises which internal commands are valid in which states:

NEW LOAD PERS TEST RUN
GET STATE

EEPROM SIZE
CLEAR EEPROM
WRITE EEPROM

READ EEPROM * * *
EEPROM CRC

SET STATE
GET APPLICATION ID
START ENCRYPTION

END ENCRYPTION
ECHO

ASSIGN NAD
FILE IO **

* The READ EEPROM command is allowed in states PERS, TEST, and RUN if
encryption with key number 0 is enabled (see 8.7.7 The READ EEPROM Command).

** In the Enhanced BasicCard only, the FILE IO command is allowed in state LOAD.

In state NEW, no checks are performed on addresses of EEPROM reads and writes. (This is to allow
ZeitControl to install upgrades to the BasicCard operating system, before delivery to the application
developer.)

In state LOAD, the EEPROM access commands are restricted to user EEPROM.

In a single-application BasicCard, these commands will typically be called at the following points in
the development cycle:

8. Communications

144144

1. Write and test a ZC-Basic application on the PC
2. EEPROM SIZE – check that the card has the expected EEPROM size
3. CLEAR EEPROM – set EEPROM to a known state
4. WRITE EEPROM – download the application to the card
5. EEPROM CRC – check that the EEPROM was correctly written
6. FILE IO – create files and directories
7. SET STATE to TEST and reset the card
8. Run the application in the card
9. SET STATE to LOAD and reset the card
10. READ EEPROM to check any EEPROM changes made by the application

(Most of this is handled automatically by the ZeitControl MultiDebugger development software.)
When the application is written and tested, cards can be switched into the RUN state for delivery to end
users.

Applications in the MultiApplication BasicCard will normally be loaded by the Application Loader,
built into the ZCMSIM command-line interpreter and the ZCMDCARD BasicCard debugger.

MultiApplication BasicCard

The operating system in the MultiApplication BasicCard contains the following commands in addition
to those listed above:

GET CHALLENGE 40 Get a cryptographic Challenge for EXTERNAL AUTHENTICATE

EXTERNAL AUTHENTICATE 42 Authenticate the Terminal program to the BasicCard

INTERNAL AUTHENTICATE 44 Authenticate the BasicCard to the Terminal program

VERIFY 46 Verify the user’s password or PIN

GET FREE MEMORY 48 Get the amount of free memory available in the global heap

SELECT APPLICATION A0 Select an Application

CREATE COMPONENT A2 Create a Component

DELETE COMPONENT A4 Delete a Component

WRITE COMPONENT ATTR A6 Write a Component’s attributes

READ COMPONENT ATTR A8 Read a Component’s attributes

WRITE COMPONENT DATA AA Write a Component’s data

READ COMPONENT DATA AC Read a Component’s data

FIND COMPONENT AE Get the CID of a Component from its name

COMPONENT NAME B0 Get the name of a Component from its CID

GRANT PRIVILEGE B2 Grant a Privilege to a File

AUTHENTICATE FILE B4 Authenticate a File with a Signature

READ RIGHTS LIST B6 Read the Privileges and Signatures of a File

LOAD SEQUENCE B8 Start, end, or abort a Load Sequence session

SECURE TRANSPORT BA Start or end a Secure Transport session

8.7 Pre-Defined Commands

145

8.7.3 The GET STATE Command

GET STATE – Get the state and version of the card

Command syntax: CLA INS P1 P2 Le
C0 00 00 00 00

Response: ODATA SW1 SW2
state (1 byte), version (n bytes) 61 n+1

This command returns the state and version of the BasicCard.

The state byte (Compact and Enhanced BasicCards):

state: 00 01 02 03
State of card: NEW LOAD TEST RUN

The state byte (Professional and MultiApplication BasicCards):

state: 00 01 02 03 04
State of card: NEW LOAD PERS TEST RUN

The length of the version field depends on the card type, as follows:

Compact BasicCard: n = 0 (i.e. no version field is returned)
Enhanced BasicCard: n = 2: major version number (03) followed by minor version number
Other card types: n >= 3: the version info is an ASCII string

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present, or Le is absent
swP1P2Error P1 <> 00 or P2 <> 00

To call GET STATE from a Terminal program:

#Include COMMANDS.DEF
Call GetState (state@, version$)

8. Communications

146146

8.7.4 The EEPROM SIZE Command

EEPROM SIZE – Get the address and length of EEPROM

Command syntax: CLA INS P1 P2 Le
C0 02 00 00 04

Response: ODATA SW1 SW2
start (2 bytes), length (2 bytes) 90 00

Returns the start address and length of loadable EEPROM.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present, or Le is absent
swInvalidState Card is not in NEW or LOAD state
swP1P2Error P1 <> 00 or P2 <> 00

To call EEPROM SIZE from a Terminal program:

#Include COMMANDS.DEF
Call EepromSize (start%, length%)

8.7 Pre-Defined Commands

147

8.7.5 The CLEAR EEPROM Command

CLEAR EEPROM – Set specified bytes to FF

Single-Applications BasicCards

Command syntax: CLA INS P1P2 Lc IDATA
C0 04 addr 02 length (2 bytes)

Response: SW1 SW2
90 00

Sets length bytes of EEPROM to FF, starting from address addr.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> 02, or length of IDATA <> 02
swInvalidState Card is not in NEW or LOAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call CLEAR EEPROM from a Terminal program:

#Include COMMANDS.DEF
Call ClearEeprom (P1P2=addr%, length%)

MultiApplication BasicCard in state PERS

Command syntax: CLA INS P1 P2
C0 04 00 00

Response: SW1 SW2
90 00

Sets all of EEPROM to FF.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> 02, or length of IDATA <> 02
swInvalidState Card is not in state NEW, LOAD, or PERS

To call CLEAR EEPROM from a Terminal program for the MultiApplication BasicCard:

#Include COMMANDS.DEF
Call ClearEeprom (Lc=0, 0)

8. Communications

148148

8.7.6 The WRITE EEPROM Command

WRITE EEPROM – Load data into EEPROM

Command syntax: CLA INS P1P2 Lc IDATA
C0 06 addr len data

Response: SW1 SW2
90 00

Writes data (len bytes) to EEPROM starting at address addr.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> length of IDATA
swInvalidState Card is not in NEW or LOAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call WRITE EEPROM from a Terminal program:

Declare Command &HC0 &H06 WriteEeprom (data$, Disable Le)
Call WriteEeprom (P1P2=addr%, data$)

Note: For security reasons, the WRITE_EEPROM command is encrypted, and is not available for
general use. Calling this command from a user program is likely to damage the card irreparably. For
this reason, it is not included in COMMANDS.DEF. However, it is possible to call this command with
data supplied by the compiler in the Image File – see the BCLOAD.EXE source code in
BasicCardPro\Source\BCLoad for an example of how to do this. In such cases, you must
declare the WriteEeprom command yourself, as shown above.

8.7 Pre-Defined Commands

149

8.7.7 The READ EEPROM Command

READ EEPROM – Read data from EEPROM

Command syntax: CLA INS P1P2 Le
C0 08 addr len

Response: ODATA SW1 SW2
data (len bytes) 90 00

Reads len bytes from EEPROM starting from address addr. If you have configured key number 00 in
the card, then the READ EEPROM command can be called whatever the state of the card, by enabling
encryption with key 00. You should consider this option whenever the card contains data that is not
available elsewhere – if the card becomes unusable for any reason, for example because of hardware
errors writing to EEPROM, you can recover the data this way.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present, or Le is absent
swInvalidState Card is not in NEW or LOAD state, and key 00 is not active
swOutsideEeprom Address range not wholly contained in EEPROM

To call READ EEPROM from a Terminal program:

#Include COMMANDS.DEF
Call ReadEeprom (P1P2=addr%, data$, Le=len@)

8. Communications

150150

8.7.8 The EEPROM CRC Command

EEPROM CRC – Calculate a CRC over a specified EEPROM address range

Command syntax: CLA INS P1P2 Lc IDATA Le
C0 0A addr 02 length (2 bytes) 02

Response: ODATA SW1 SW2
CRC (2 bytes) 90 00

Returns the CRC of length bytes from address addr. All bytes must be in EEPROM. This command
can be used to verify the contents of EEPROM after downloading an application to the card.

In the Enhanced BasicCard, this command also serves the function of enabling the BasicCard file
system. To access the file system while the card is still in state LOAD, an EEPROM CRC command
must be sent, to let the card know that the relevant data structures have been downloaded; the
BCLOAD program does this automatically after downloading a ZC-Basic program to the BasicCard.

Warning: Do not call this command in the Enhanced BasicCard before a valid ZC-Basic program has
been loaded. The card will attempt to enable a non-existent file system, which can permanently disable
the card. (In the Compact and Professional BasicCards, you can call this command at any time.)

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> 02 or length of IDATA <> 02 or Le not present
swInvalidState Card is not in NEW or LOAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call EEPROM CRC from a Terminal program:

#Include COMMANDS.DEF
Call EepromCRC (P1P2=addr%, length%)

The CRC is returned in the length% variable.

Note: If Le >= 3, the Professional BasicCard returns a 32-bit CRC. To call the 32-bit EEPROM CRC
command from a Terminal program:

#Include COMMANDS.DEF
CRCHi% = length%
Call EepromCRC32 (P1P2=addr%, CRCHi%, CRCLo%)

16-bit and 32-bit CRC calculations are described in 7.10.4 CRC Calculations.

8.7 Pre-Defined Commands

151

8.7.9 The SET STATE Command

SET STATE – Set the state of the card

Command syntax: CLA INS P1 P2
C0 0C state 00

Response: SW1 SW2
90 00

This command changes the state of the card, as folllows:

Compact and Enhanced BasicCards

state: 01 02 03
New card state: LOAD TEST RUN

Professional and MultiApplication BasicCards

state: 01 02 03 04
New card state: LOAD PERS TEST RUN

After this command is successfully called, no further commands are allowed until the card is reset.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc or Le present
swInvalidState Card is in RUN state
swCardUnconfigured The card has not been configured by ZeitControl. If you see this error,

contact ZeitControl for a replacement card.
swP1P2Error P1 = 00 or P1 > RUN or P2 <> 00

To call SET STATE from a Terminal program:

#Include COMMANDS.DEF
Call SetState (P1=state@)

Note: This command may also be used to certify EEPROM code in Enhanced BasicCards ZC3.1,
ZC3.2, and ZC3.31. Contact ZeitControl if you need to know how this works.

8. Communications

152152

8.7.10 The GET APPLICATION ID Command

GET APPLICATION ID – Get the Application ID string

Single-Application BasicCards

Command syntax: CLA INS P1 P2 Le
C0 0E 00 00 or 03 00

Response: ODATA SW1 SW2
Data 61 len

P2 = 00: Data contains the Application ID specified in the ZC-Basic source code statement:

Declare ApplicationID = Application-ID

P2 = 03: In later Professional BasicCard versions, Data contains the 8-byte hardware Serial Number of
the card, as returned by the MISC System Library function CardSerialNumber(). This functionality is
available in the following revisions:

ZC4.5A REV F ZC4.5D REV F ZC5.4 REV G ZC5.5 REV G

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present or Le is absent
swInvalidState Card is not in TEST or RUN state
swP1P2Error P1 <> 00 or P2 <> 00
swDataNotFound Application ID not configured

To call GET APPLICATION ID from a Terminal program for a single-application BasicCard:

#Include COMMANDS.DEF
Call GetApplicationID (ApplicationID$)

MultiApplication BasicCard

Command syntax: CLA INS P1 P2 Le
C0 0E index type 00

Response: ODATA SW1 SW2
Data 61 len

type Data
 0 Application ID of Application specified in index
 1 Filename of Application specified in index
 2 Contents of special file “\CardID” – see 5.3.2Card ID File; index must be zero
3 8-byte hardware Serial Number of the card; index must be zero

For type equal to 0 or 1, if index is equal to zero, it refers to the currently selected Application. If index
is equal to n with n >= 1, it refers to the n t h executable Application file (according to the order in
which the files were created).

To call GET APPLICATION ID from a Terminal program for the MultiApplication BasicCard:

#Include COMMANDS.DEF
Call GetApplicationID (P1=index@, P2=type%, Data$)

8.7 Pre-Defined Commands

153

8.7.11 The START ENCRYPTION Command

START ENCRYPTION – Start automatic encryption of command/response data

This command initiates automatic encryption of command and response data fields. Its format depends
on the card type.

Compact and Enhanced BasicCards:

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 10 algorithm key 04 Random number RA (4 bytes) 04

Response: ODATA SW1 SW2
Random number RB (4 bytes) 90 00

Professional BasicCard:

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 10 algorithm key lenR Random number RA (lenR bytes) 00

Response: ODATA SW1 SW2
algorithm (1 byte); Random number RB (lenR bytes) 61 lenR+1

MultiApplication BasicCard:

Command syntax: CLA INS P1P2 Lc IDATA Le
C0 10 KeyCID lenR+1 algorithm (1 byte); Random number RA (lenR bytes) 00

Response: ODATA SW1 SW2
algorithm (1 byte); Random number RB (lenR bytes) 61 lenR+1

algorithm is one of the following cryptographic algorithms, defined in the file AlgID.DEF:

algorithm lenR key length
AlgSgLfsr SG-LFSR (Shrinking Generator – Linear Feedback Shift Register) 4 8

AlgSgLfsrCrc SG-LFSR with CRC-16 4 8
AlgSingleDes Single DES (Data Encryption Standard, 8-byte key) 4 8
AlgTripleDes Triple DES-EDE2 (Data Encryption Standard, 16-byte key) 4 10 (=1610)

AlgSingleDesCrc Single DES with CRC 4 8
AlgTripleDesEDE2Crc Triple DES-EDE2 with CRC 4 10 (=1610)
AlgTripleDesEDE3Crc Triple DES-EDE3 with CRC 4 18 (=2410)

AlgAes128 AES-128 (Advanced Encryption Standard, 128-bit key) 8 10 (=1610)
AlgAes192 AES-192 (Advanced Encryption Standard, 192-bit key) 8 18 (=2410)
AlgAes256 AES-256 (Advanced Encryption Standard, 256-bit key) 8 20 (=3210)

AlgEaxAes128 EAX with AES-128 8 10 (=1610)
AlgEaxAes192 EAX with AES-192 8 18 (=2410)
AlgEaxAes256 EAX with AES-256 8 20 (=3210)

AlgOmacAes128 OMAC with AES-128 0 10 (=1610)
AlgOmacAes192 OMAC with AES-192 0 18 (=2410)
AlgOmacAes256 OMAC with AES-256 0 20 (=3210)

8. Communications

154154

For descriptions of these algorithms, and the role of RA and RB, see Chapter 9: Encryption
Algorithms.

In single-application BasicCards, key is the key number. It must match one of the key numbers
configured in the BasicCard program with the ZC-Basic Declare Key statement, of length at least key
length from the above table. If the START ENCRYPTION command is successful, the pre-defined
variable KeyNumber is set equal to key.

In the MultiApplication BasicCard, KeyCID is the CID of the Key . If the START ENCRYPTION
command is successful, the pre-defined variable SMKeyCID is set equal to KeyCID.

Algorithms supported in the Compact BasicCard

The Compact BasicCard supports algorithms AlgSgLfsr and AlgSgLfsrCrc.

Algorithms supported in the Enhanced BasicCard

The Enhanced BasicCard supports algorithms AlgSingleDes and AlgTripleDes.

Algorithms supported in the Professional BasicCard

The different Professional BasicCard versions support various combinations of cryptographic
algorithms. See the Professional BasicCard Datasheet for up to date information. At the time of
writing, the following versions are available:

BasicCard Algorithms
ZC4.5A AlgAes128
ZC4.5D AlgSingleDesCrc, AlgTripleDesCrc
ZC5.4 AlgAes128, AlgAes192, AlgAes256, AlgSingleDesCrc, AlgTripleDesEDE2Crc
ZC5.5 All the algorithms in the above table from AlgSingleDesCRC to AlgOmacAes256

Algorithms supported in the MultiApplication BasicCard

The MultiApplication BasicCard supports all the algorithms in the above table from
AlgSingleDesCRC to AlgOmacAes256.

Automatic Algorithm Selection

The Enhanced, Professional, and MultiApplication BasicCards support automatic algorithm selection:
If algorithm is zero, then the card automatically selects the strongest algorithm that is compatible with
lenR and the key length. In the Professional and MultiApplication BasicCards, the algorithm thus
selected is returned in the first byte of ODATA.

The Compact BasicCard returns with SW1-SW2 = swUnknownAlgorithm if algorithm is zero.

Command-Specific Error Codes in SW1-SW2:

swKeyNotFound Key number key was not configured
swPolyNotFound Primitive polynomials were not initialised
swKeyTooShort Key number key is too short
swKeyDisabled Key number key is disabled
swUnknownAlgorithm algorithm is unknown, or is not enabled in the card
swAlreadyEncrypting Encryption is already enabled
swLcLeError Compact and Enhanced BasicCards: Lc <> 04, or Le is absent

Professional and MultiApplication BasicCards: RA too short, or Le absent
swInvalidState Card is not in TEST or RUN state

To call START ENCRYPTION from a Terminal program for a Compact or Enhanced BasicCard, or a
Professional BasicCard with DES support:

#Include COMMANDS.DEF
Call StartEncryption ([P1=Algorithm@,] P2=KeyNumber@, Rnd)

To call START ENCRYPTION from a Terminal program for a Professional BasicCard:

8.7 Pre-Defined Commands

155

#Include COMMANDS.DEF
Call ProEncryption ([P1=Algorithm@,] P2=KeyNumber@, Rnd, Rnd)

Note that both forms are accepted by a Professional BasicCard with DES support.

To call START ENCRYPTION from a Terminal program for a MultiApplication BasicCard, see 5.6
Secure Messaging.

Alternatively, for all BasicCard types, COMMANDS.DEF defines the subroutine AutoEncryption,
which automatically selects the correct version of the command:

#Include COMMANDS.DEF
Call AutoEncryption (KeyNumber@, KeyName$)

where KeyName$ is the name of the Key in the MultiApplication BasicCard (so it can be the empty
string if the card is known to be a single-application type).

8. Communications

156156

8.7.12 The END ENCRYPTION Command

END ENCRYPTION – End automatic encryption

Command syntax: CLA INS P1 P2
C0 12 00 00

Response: SW1 SW2
90 00

This command ends automatic encryption of command and response data fields.

Command-Specific Error Codes in SW1-SW2:

swNotEncrypting Encryption is not currently enabled
swLcLeError Lc or Le present
swInvalidState Card is not in TEST or RUN state
swP1P2Error P1 <> 00 or P2 <> 00

To call END ENCRYPTION from a Terminal program:

#Include COMMANDS.DEF
Call EndEncryption()

8.7 Pre-Defined Commands

157

8.7.13 The ECHO Command

ECHO – Echo the command data

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 14 increment 00 datalen data resplen

Response: ODATA SW1 SW2
data+increment 90 00

This command simply adds increment to each byte in data, and returns resplen bytes. It is intended for
testing communication and encryption (see 9.13 Encryption – a Worked Example).

Note: The Compact and Enhanced BasicCards ignore resplen, always returning datalen bytes.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> length of IDATA or Le not present
swP1P2Error P2 <> 00

To call ECHO from a Terminal program:

#Include COMMANDS.DEF
Call Echo (P1=increment@, S$, Le=resplen@)

8. Communications

158158

8.7.14 The ASSIGN NAD Command

ASSIGN NAD – Assign a Node Address to the card

Command syntax: CLA INS P1 P2
C0 16 NAD 00

Response: SW1 SW2
90 00

If 1 <= NAD <= 7, this command tells the card to respond only to those messages in which the high
nibble of the first byte (the NAD) is equal to NAD. If NAD = 0, this command tells the card to respond
to all messages. Other values of NAD are invalid.

Notes:

• The ASSIGN NAD command is not used by ZeitControl’s software; all commands sent by the
Terminal program have NAD=00.

• This command is supported only by Compact BasicCard ZC1.1 and Enhanced BasicCards ZC3.3
through ZC3.9.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc or Le present
swP1P2Error P1 > 07 or P2 <> 00

To call ASSIGN NAD from a Terminal program:

#Include COMMANDS.DEF
Call AssignNAD (P1=NAD@)

8.7 Pre-Defined Commands

159

8.7.15 The FILE IO Command

FILE IO – Execute a file system operation (not available in Compact BasicCard)

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 18 SysCode filenum CommandLen CommandData ResponseLen

Response: ODATA SW1 SW2
status (1 byte) + ResponseData 90 00

This command is sent whenever the Terminal program attempts to access the file system in the
BasicCard. The P-Code interpreter in the PC builds the command automatically, sends it to the
BasicCard, and interprets the response. SysCode is the same as the SysCode parameter to the SYSTEM
P-Code instruction – see 10.7.4 FILE SYSTEM Functions. The status byte in the ODATA field is the
FileError byte for the operation. The format of the CommandData and ResponseData fields depends
on the value of SysCode, and is not described in this document.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> length of IDATA, or Le absent
swP1P2Error SysCode is not a valid file system operation

The FILE IO command was not designed to be called directly from a Terminal program. The P-Code
interpreter calls it automatically when a file system operation is requested – see Chapter 4: Files and
Directories for a description of the file system commands available in ZC-Basic.

8. Communications

160160

8.7.16 The GET CHALLENGE Command

GET CHALLENGE – Get a cryptographic Challenge for EXTERNAL AUTHENTICATE

Command syntax: CLA INS P1 P2 Le
C0 40 00 00 ChallengeLen

Response: ODATA SW1 SW2
Challenge 90 00

This command returns a random string of bytes as a Challenge for a subsequent EXTERNAL
AUTHENTICATE command. If the Algorithm that will be used in the EXTERNAL
AUTHENTICATE command is AlgSingleDesCrc or AlgTripleDesCrc, then ChallengeLen must be
at least 8; if the Algorithm is AlgAes128, AlgAes192, or AlgAes256, then ChallengeLen must be at
least 16. If Le is zero, or greater than 16, then 16 bytes are returned; this is valid for all Algorithms.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present or Le is absent
swP1P2Error P1P2 <> 0

To call GET CHALLENGE from a Terminal program:

#Include COMPONNT.DEF
Call GetChallenge (Challenge$, Le=ChallengeLen@)

Note: If you need to avoid a name clash with the ISO GET CHALLENGE command, just define the
constant NoISONames, at the start of the Terminal program (with Const NoISONames = True) or as
a compiler option. You can still call the BasicCard command, using the name ZCGetChallenge.

8.7 Pre-Defined Commands

161

8.7.17 The EXTERNAL AUTHENTICATE Command

EXTERNAL AUTHENTICATE – Authenticate the Terminal program to the BasicCard

Command syntax: CLA INS P1P2 Lc IDATA
C0 42 KeyCID n+1 Algorithm (1 byte); Response to Challenge

Response: SW1 SW2
90 00

The EXTERNAL AUTHENTICATE command is used to prove to the BasicCard that the Terminal
program has access to a given Key. It does this by encrypting the Challenge returned by the GET
CHALLENGE command, using the Algorithm’s block encryption primitive.

Algorithm One of AlgSingleDesCrc, AlgTripleDesCrc, AlgAes128, AlgAes192, AlgAes256
n Block length of Algorithm: 8 bytes for AlgSingleDesCrc or AlgTripleDesCrc, and

16 bytes for AlgAes128, AlgAes192, or AlgAes256

EXTERNAL AUTHENTICATE must be the next command after GET CHALLENGE; any
intervening command cancels the Challenge. If Response to Challenge is correct, the Access Condition
ExtAuth (KeyCID) will be satisfied, until the next EXTERNAL AUTHENTICATE command is
received or the card is reset.

The pre-defined variable ExtAuthKeyCID is set equal to KeyCID if this command is successful, or to
zero if not.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is not equal to n+1, or Le is present
swDataNotFound GET CHALLENGE was not the most recently received command, or the

Challenge requested was less than n bytes
swKeyNotFound A Key with the given KeyCID was not found
swKeyUsage The Key’s Usage attribute does not have kuExtAuth enabled
swKeyAlgorithm The Key’s Algorithm attribute does not have the given Algorithm enabled
swKeyTooShort The Key is too short for the given Algorithm
swUnknownAlgorithm Algorithm is not one of the five listed above
swBadAuthenticate Response to Challenge is incorrect

To call EXTERNAL AUTHENTICATE from a Terminal program:

#Include COMPONNT.DEF
Call ExternalAuthenticate (P1P2=KeyCID%, Algorithm@, Response$)

Note: If you need to avoid a name clash with the ISO EXTERNAL AUTHENTICATE command,
just define the constant NoISONames, at the start of the Terminal program (with Const NoISONames
= True) or as a compiler option. You can still call the BasicCard command, using the name
ZCExternalAuthenticate.

8. Communications

162162

8.7.18 The INTERNAL AUTHENTICATE Command

INTERNAL AUTHENTICATE – Authenticate the BasicCard to the Terminal program

Command syntax: CLA INS P1P2 Lc IDATA Le
C0 44 KeyCID n+1 Algorithm (1 byte); Challenge n

Response: ODATA SW1 SW2
Response to Challenge 90 00

The INTERNAL AUTHENTICATE command is used to prove to the Terminal program that the
BasicCard has access to a given Key. It does this by encrypting Challenge using the Algorithm’s block
encryption primitive.

Algorithm One of AlgSingleDesCrc, AlgTripleDesCrc, AlgAes128, AlgAes192, AlgAes256
n Block length of Algorithm: 8 bytes for AlgSingleDesCrc or AlgTripleDesCrc, and

16 bytes for AlgAes128, AlgAes192, or AlgAes256

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is not equal to n+1, or Le is absent
swKeyNotFound A Key with the given KeyCID was not found
swKeyUsage The Key’s Usage attribute does not have kuIntAuth enabled
swKeyAlgorithm The Key’s Algorithm attribute does not have the given Algorithm enabled
swKeyTooShort The Key is too short for the given Algorithm
swUnknownAlgorithm Algorithm is not one of the five listed above

To call INTERNAL AUTHENTICATE from a Terminal program:

#Include COMPONNT.DEF
Call InternalAuthenticate (P1P2=KeyCID%, Algorithm@, Challenge$)
Response$ = Chr$(Algorithm@) + Challenge$ ′ Construct response

Note: If you need to avoid a name clash with the ISO INTERNAL AUTHENTICATE command, just
define the constant NoISONames, at the start of the Terminal program (with Const NoISONames =
True) or as a compiler option. You can still call the BasicCard command, using the name
ZCInternalAuthenticate.

8.7 Pre-Defined Commands

163

8.7.19 The VERIFY Command

VERIFY – Verify the user’s password or PIN

Command syntax: CLA INS P1P2 Lc IDATA
C0 46 KeyCID n Password

Response: SW1 SW2
90 00

The VERIFY command is used to prove to the BasicCard that the user knows a given password or
PIN. The user types the password, which is sent unencrypted in the IDATA field (unless automatic
encryption of Commands and Responses has been activated with the START ENCRYPTION
command). If Password matches the data field of the given Key, the Access Condition
Verify (KeyCID) will be satisfied, until the next VERIFY command is received or the card is reset.

The pre-defined variable VerifyKeyCID is set equal to KeyCID if this command is successful, or to
zero if not.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Le is present
swKeyNotFound A Key with the given KeyCID was not found
swKeyUsage The Key’s Usage attribute does not have kuVerify enabled
swBadAuthenticate Password is incorrect

To call VERIFY from a Terminal program:

#Include COMPONNT.DEF
Call Verify (P1P2=KeyCID%, Password$)

Note: If you need to avoid a name clash with the ISO VERIFY command, just define the constant
NoISONames, at the start of the Terminal program (with Const NoISONames = True) or as a
compiler option. You can still call the BasicCard command, using the name ZCVerify.

8. Communications

164164

8.7.20 The GET FREE MEMORY Command

GET FREE MEMORY – Get the amount of free memory available in the global heap

Command syntax: CLA INS P1 P2 Le
C0 48 00 00 04

Response: ODATA SW1 SW2
TotalFreeMemory (2 bytes); LargestFreeBlock (2 bytes) 90 00

The GET FREE MEMORY command returns the total free memory, and the size of the largest free
block, in the card’s global heap.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present, or Le is absent
swP1P2Error P1P2 <> 0
swBadEepromHeap The global heap is invalid. Contact ZeitControl for assistance

To call GET FREE MEMORY from a Terminal program:

#Include COMPONNT.DEF
Call GetFreeMemory (TotalFreeMemory%, LargestFreeBlock%)

8.7 Pre-Defined Commands

165

8.7.21 The SELECT APPLICATION Command

SELECT APPLICATION – Select an Application

Command syntax: CLA INS P1 P2 Lc IDATA
C0 A0 00 00 len filename

Response: SW1 SW2
90 00

The SELECT APPLICATION command selects a File as the current Application.

To succeed, the caller must have Execute access to File filename. In addition, if there exists an ACR
with the name “Executable” in the Root Directory, this ACR must be satisfied by File filename (not by
the caller) for Execute access. In other words, when checking whether ACR “Executable” is satisfied,
the three ACR types that depend on the current Application – Privilege, Signed, and Application – are
evaluated as if filename were the current Application file.

If this call fails, the current Application remains unchanged.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is absent, or Le is present
swP1P2Error P1P2 <> 0
swApplicationNotFound File filename not found
swAppFileOpen File filename is currently open for reading or writing
swExecutableAcrDenied ACR “\Executable” exists, and is not satisfied by File filename
swAccessDenied The caller does not have Execute access to File filename
swBadAppFile filename is not a valid executable File
swSecureTransportActive No Application may be selected during Secure Transport

To call SELECT APPLICATION from a Terminal program:

#Include COMPONNT.DEF
Call SelectApplication (filename$)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
SelectApplication is implemented as a System Library procedure, not as a Command definition.

8. Communications

166166

8.7.22 The CREATE COMPONENT Command

CREATE COMPONENT – Create a Component

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 A2 type 00 len See below 02

Response: ODATA SW1 SW2
CID of new Component (2 bytes) 90 00

The CREATE COMPONENT command creates a Component in the BasicCard. It requires Write
access to the Component’s parent directory.

type the type of the Component: ctFile, ctACR, ctPrivilege, ctFlag, or ctKey.
IDATA pathlen, the length of pathname (1 byte);

pathname, the pathname of the Component (absolute, or relative to the current directory);
attrlen, the length of attributes (1 byte);
attributes, the Attributes field of the Component;
data, the Data field of the Component.

The length of the data field can be deduced from Lc (datalen = Lc – pathlen – attrlen – 2), so it is not
required in IDATA. The format of the Attributes and Data fields depends on the Component type; a
full description can be found in 5.8 Component Details.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is less than 2, or Le is absent
swP1P2Error P2 <> 0
swBadComponentName pathlen is invalid, or pathname is not a valid Component name
swBadComponentType P1 is not a valid Component type
swBadComponentAttr attrlen is invalid, or attributes is invalid for the Component type
swBadComponentData data is invalid for the Component type
swComponentAlreadyExists A Component of type P1 with the given pathname already exists

To call CREATE COMPONENT from a Terminal program:

#Include COMPONNT.DEF
Call CreateComponent (type@, name$, attributes$, data$)

The format of the attributes field for each Component type is available as a user-defined structure type
in COMPONNT.DEF. 5.8 Component Details gives the details, and shows how to pass a user-defined
structure in a String parameter.

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
CreateComponent is implemented as a System Library procedure, not as a Command definition.

8.7 Pre-Defined Commands

167

8.7.23 The DELETE COMPONENT Command

DELETE COMPONENT – Delete a Component

Command syntax: CLA INS P1P2
C0 A4 CID

Response: SW1 SW2
90 00

The DELETE COMPONENT command deletes a Component from the BasicCard. Delete access to
the Component is required.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc or Le is present
swComponentNotFound No Component with the given CID exists
swLoadSequenceActive No Component may be deleted during a Load Sequence – see

8.7.33 The LOAD SEQUENCE Command for more information
swComponentReferenced The Component is referenced by other Components, and may

therefore not be deleted
An ACR may be referenced as the Lock attribute of another
Component; any Component type may be referenced as the
parameter to an ACR. If a Privilege or Key is referenced only from
the Rights List of a File, it will be automatically deleted from the
Rights List, and will not generate this error. See 8.7.32 The READ
RIGHTS LIST Command for information on Rights Lists.

To call DELETE COMPONENT from a Terminal program:

#Include COMPONNT.DEF
Call DeleteComponent (CID%)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
DeleteComponent is implemented as a System Library procedure, not as a Command definition.

8. Communications

168168

8.7.24 The WRITE COMPONENT ATTR Command

WRITE COMPONENT ATTR – Write a Component’s attributes

Command syntax: CLA INS P1P2 Lc IDATA
C0 A6 CID len attributes

Response: SW1 SW2
90 00

The WRITE COMPONENT ATTR command writes the Attributes field of a Component. Write and
Delete access to the Component are required. The format of a Component’s Attributes field depends on
the type of the Component; a full description can be found in 5.8 Component Details.

This is the command to use if you want to change a Component’s Access Control Rule. If the
Component is a Flag or a Key, then it has other writable attributes; if you want to leave these attributes
unchanged, you should read them with READ COMPONENT ATTR, change the ACRCID% field,
and write them with WRITE COMPONENT ATTR.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is absent or Le is present
swComponentNotFound No Component with the given CID exists
swBadComponentAttr The attributes field is invalid for the Component type

To call WRITE COMPONENT ATTR from a Terminal program:

#Include COMPONNT.DEF
Call WriteComponentAttr (CID%, attributes$)

The format of the attributes field for each Component type is available as a user-defined structure type
in COMPONNT.DEF. 5.8 Component Details gives the details, and shows how to pass a user-defined
structure in a String parameter.

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
WriteComponentAttr is implemented as a System Library procedure, not as a Command definition.

8.7 Pre-Defined Commands

169

8.7.25 The READ COMPONENT ATTR Command

READ COMPONENT ATTR – Read a Component’s attributes

Command syntax: CLA INS P1P2 Le
C0 A8 CID 00

Response: ODATA SW1 SW2
attributes 61 len

The READ COMPONENT ATTR command reads the Attributes field of a Component. Read access
is required to the Component’s parent directory, but not to the Component itself. The format of a
Component’s Attributes field depends on the type of the Component; a full description can be found in
5.8 Component Details.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present or Le is absent
swComponentNotFound No Component with the given CID exists

To call READ COMPONENT ATTR from a Terminal program:

#Include COMPONNT.DEF
Call ReadComponentAttr (CID%, attributes$)

The format of the attributes field for each Component type is available as a user-defined structure type
in COMPONNT.DEF. 5.8 Component Details gives the details, and shows how to pass a user-defined
structure in a String parameter.

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
ReadComponentAttr is implemented as a System Library procedure, not as a Command definition.

8. Communications

170170

8.7.26 The WRITE COMPONENT DATA Command

WRITE COMPONENT DATA– Write a Component’s data

Command syntax: CLA INS P1P2 Lc IDATA
C0 AA CID len data

Response: SW1 SW2
90 00

The WRITE COMPONENT DATA command writes the Data field of a Component. Write access to
the Component is required. The format of a Component’s Data field depends on the type of the
Component; a full description can be found in 5.8 Component Details.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is absent or Le is present
swComponentNotFound No Component with the given CID exists
swBadComponentData The data field is invalid for the Component type

To call WRITE COMPONENT DATA from a Terminal program:

#Include COMPONNT.DEF
Call WriteComponentData (CID%, data$)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
WriteComponentData is implemented as a System Library procedure, not as a Command definition.

8.7 Pre-Defined Commands

171

8.7.27 The READ COMPONENT DATA Command

READ COMPONENT DATA – Read a Component’s data

Command syntax: CLA INS P1P2 Le
C0 AC CID 00

Response: ODATA SW1 SW2
data 61 datalen

The READ COMPONENT DATA command reads the Data field of a Component. Read access to the
Component is required. The format of a Component’s Data field depends on the type of the
Component; a full description can be found in 5.8 Component Details.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present or Le is absent
swComponentNotFound No Component with the given CID exists

To call READ COMPONENT DATA from a Terminal program:

#Include COMPONNT.DEF
Call ReadComponentData (CID%, data$)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
ReadComponentData is implemented as a System Library procedure, not as a Command definition.

8. Communications

172172

8.7.28 The FIND COMPONENT Command

FIND COMPONENT – Get the CID of a Component from its name

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 AE type 00 len pathname 02

Response: ODATA SW1 SW2
CID (2 bytes) 90 00

The FIND COMPONENT command finds the CID of a Component given its type and pathname.
Read access is required to all directories in the path, but not to the Component itself.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc or Le is absent
swP1P2Error P2 <> 0
swBadComponentType type is not a valid Component type
swBadComponentName pathname is not a valid Component name
swComponentNotFound No such Component exists

To call FIND COMPONENT from a Terminal program:

#Include COMPONNT.DEF
CID% = FindComponent (type@, name$)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
FindComponent is implemented as a System Library procedure, not as a Command definition.

8.7 Pre-Defined Commands

173

8.7.29 The COMPONENT NAME Command

COMPONENT NAME – Get the name of a Component from its CID

Command syntax: CLA INS P1P2 Le
C0 B0 CID 00

Response: ODATA SW1 SW2
pathname 61 len

The COMPONENT NAME command returns the full pathname of a Component given its CID. Read
access is required to all directories in the path, but not to the Component itself.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present, or Le is absent
swBadComponentType The top four bits of CID do not form a valid Component type
swComponentNotFound There is no Component with the gven CID

To call COMPONENT NAME from a Terminal program:

#Include COMPONNT.DEF
pathname$ = ComponentName (CID%)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
ComponentName is implemented as a System Library procedure, not as a Command definition.

8. Communications

174174

8.7.30 The GRANT PRIVILEGE Command

GRANT PRIVILEGE – Grant a Privilege to a File

Command syntax: CLA INS P1P2 Lc IDATA
C0 B2 PrivilegeCID len filename

Response: SW1 SW2
90 00

The GRANT PRIVILEGE command grants a Privilege to a File. This command requires Grant
access to the Privilege, and Write access to the File. If the command is successful, PrivilegeCID is
added to the File’s Rights List; this causes the Access Condition Privilege (PrivilegeCID) to be
satisfied whenever File is the currently selected Application.

If the IDATA field is empty, the command grants the Privilege to the Terminal program. The Terminal
program is allowed to grant itself a Privilege in this way, as long as it has Grant access to the Privilege.

More precisely:
• If an operation is initiated from user code in an Application, then the Access Condition

Privilege (Privilege) is satisfied if the Privilege is contained in the Rights List of the Application
File.

• If an operation is initiated from the Terminal program, then the Access Condition
Privilege (Privilege) is satisfied if the Privilege has been granted to the Terminal program since
the card was last reset. (But the card only remembers the three most recent such Privileges.)

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is absent, or Le is present
swBadComponentType PrivilegeCID is not a valid CID for a Component of type Privilege
swBadComponentName filename is not a valid filename
swComponentNotFound Either the Privilege or the File does not exist

To call GRANT PRIVILEGE from a Terminal program:

#Include COMPONNT.DEF
Call GrantPrivilege (PrivilegeCID%, filename$)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
GrantPrivilege is implemented as a System Library procedure, not as a Command definition.

8.7 Pre-Defined Commands

175

8.7.31 The AUTHENTICATE FILE Command

AUTHENTICATE FILE – Authenticate a File with a Signature

Command syntax: CLA INS P1P2 Lc IDATA
C0 B4 KeyCID len See below

Response: SW1 SW2
90 00

The AUTHENTICATE FILE command authenticates a File with an Elliptic Curve signature or a
Message Authentication Code (MAC). It requires Read access to the File.

KeyCID The CID of the Key used to verify the signature or authenticate the MAC

IDATA algorithm, the cryptographic algorithm used to sign or authenticate the File
namelen, the length of filename
filename, the path name of the File
signature, the signature or MAC

Valid algorithms are AlgEC167, AlgOmacAes128, AlgOmacAes192, and AlgOmacAes256.

• If algorithm is equal to AlgEC167, then KeyCID is the CID of an Elliptic Curve Public Key;
signature is a 42-byte digital signature of the contents of the File, computed using the
corresponding Private Key, as if by the EC167 System Library procedure EC167HashAndSign
(see 7.3.5 Generating a Digital Signature for details).

• If algorithm is equal to AlgOmacAes128, AlgOmacAes192, or AlgOmacAes256, then signature
is the 16-byte MAC of the contents of the File, computed with the OMAC algorithm, as if by the
System Library procedure OMAC (see 7.6 The OMAC Library).

If the command is successful, KeyCID is added to the File’s Rights List; this causes the Access
Condition Signed (KeyCID) to be satisfied whenever File is the currently selected Application.

For another method of authenticating a File, see 5.5.2 Automatic File Authentication.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is absent, or Le is present
swBadComponentType KeyCID is not a valid CID for a Component of type Key
swBadComponentName filename is not a valid filename
swKeyNotFound The Key does not exist
swComponentNotFound The File does not exist
swKeyUsage The Key’s Usage attribute does not have kuSign enabled
swKeyAlgorithm The Key’s Algorithm attribute does not have algorithm enabled
swKeyTooShort The Key is too short for the given algorithm
swUnknownAlgorithm algorithm is not one of the four listed above
swBadSignature The signature or MAC is incorrect

To call AUTHENTICATE FILE from a Terminal program:

#Include COMPONNT.DEF
Call AuthenticateFile (KeyCID%, algorithm@, filename$, signature$)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
AuthenticateFile is implemented as a System Library procedure, not as a Command definition.

8. Communications

176176

8.7.32 The READ RIGHTS LIST Command

READ RIGHTS LIST – Read the Privileges and Signatures of a File

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 B6 start 00 len filename 2*nmax

Response: ODATA SW1 SW2
RightsList%(start) to RightsList%(s tart+n–1) 61 2*n

The READ RIGHTS LIST command returns the Rights List of a File. This list contains the CID of
every Privilege that has been granted to the File (with the GRANT PRIVILEGE command or the
GrantPrivilege System Library procedure), and every Key that has been used to authenticate the File
(with the AUTHENTICATE FILE command or the AuthenticateFile System Library procedure).
The Rights List is used by the MultiApplication BasicCard operating system to evaluate the Access
Conditions Privilege (PrivilegeCID) and Signed (KeyCID). Read access is required to every directory
on the path, but not to the File itself.

In principle, a File can have a Rights List with more than 127 entries; such a list is too long to be
returned in the ODATA field. In this case, you can request the Rights List entries RightsList%(start) to
RightsList%(start+nmax–1) by setting P1 and Le accordingly; if Le is zero, nmax is taken to be 127.
(Here the RightsList%() array is taken to be zero-based.)

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc or Le is absent, or Le is odd
swP1P2Error P2 <> 0
swBadComponentName filename is not a valid filename
swComponentNotFound File filename does not exist
swDataNotFound The Rights List contains at most start entries, so there is no data to return

To call READ RIGHTS LIST from a Terminal program:

#Include COMPONNT.DEF
nRights% = ReadRightsList (filename$, RightsList%())

The ReadRightsList System Library procedure automatically handles the case where the number of
Rights List entries is greater than 127.

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
ReadRightsList is implemented as a System Library procedure, not as a Command definition.

8.7 Pre-Defined Commands

177

8.7.33 The LOAD SEQUENCE Command

LOAD SEQUENCE – Start, end, or abort a Load Sequence session

Command syntax: CLA INS P1 P2
C0 B8 phase 00

Response: SW1 SW2
90 00

The LOAD SEQUENCE command implements a form of data commitment for use during
Application loading. Sometimes the Application Loader will fail before loading is complete – for
instance, the card may lose power during loading, or it may have insufficient memory to create all the
required Components. In this case, none of the Application’s Components that were created before the
error occurred will be required. This command provides a simple method to ensure that these unwanted
Components are automatically deleted.

The phase parameter must be LoadSequenceStart, LoadSequenceEnd, or LoadSequenceAbort.
These constants are defined in COMPONNT.DEF. They are used as follows:

• Before the Application Loader starts to load an Application, it calls LOAD SEQUENCE with
phase=LoadSequenceStart. After this, all newly created Components will be flagged as
Uncommitted.

• If the Application loads successfully, the Application Loader calls LOAD SEQUENCE with
phase=LoadSequenceEnd; these new Components will then be flagged as Permanent.

• If the Application fails to load for any reason, the Application Loader calls LOAD SEQUENCE
with phase=LoadSequenceAbort; this tells the BasicCard to delete all Components that are
flagged as Uncommitted. If the Application Loader can’t do this, because the card is no longer
responsive (or because the Application Loader itself lost power), then the next time the card is
reset, it will delete these Components automatically.

Components cannot be deleted while a Load Sequence is active; an attempt to delete a Component will
result in the error code SW1-SW2=swLoadSequenceActive.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc or Le is present
swP1P2Error P2 <> 0
swLoadSequencePhase P1 is not one ot the three values listed above
swLoadSequenceActive phase= LoadSequenceStart, but Load Sequence is already active
swLoadSequenceNotActive phase=LoadSequenceEnd or LoadSequenceAbort, but no Load

Sequence is active

To call LOAD SEQUENCE from a Terminal program:

#Include COMPONNT.DEF
Call LoadSequence (phase@)

Note: For compatibility with the COMPONENT System Library in the MultiApplication BasicCard,
LoadSequence is implemented as a System Library procedure, not as a Command definition.

8. Communications

178178

8.7.34 The SECURE TRANSPORT Command

SECURE TRANSPORT – Start or end a Secure Transport session

Start session: CLA INS P1P2 Lc IDATA
C0 BA KeyCID len algorithm (1 byte); Nonce

Response: SW1 SW2
90 00

End session: CLA INS P1 P2
C0 BA 00 00

Response: SW1 SW2
90 00

The SECURE TRANSPORT command enables Files and Keys to be stored in an Image file in
encrypted form, using a Secure Transport Key known only to the issuer and the BasicCard. While
Secure Transport is active, the Access Condition SecTrans (KeyCID) is satisfied. See 5.5 Secure
Transport for an explanation of the Secure Transport mechanism.

Valid algorithms: AlgEaxAes128, AlgEaxAes192, AlgEaxAes256.

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc absent (P1P2 <> 0), or Lc present (P1P2 = 0), or Le present
swKeyNotFound The Key does not exist
swKeyUsage The Key’s Usage attribute does not have kuSecTrans enabled
swKeyAlgorithm The Key’s Algorithm attribute does not have algorithm enabled
swKeyTooShort The Key is too short for the given algorithm
swUnknownAlgorithm algorithm is not one of those listed above
swSecureTransportActive Attempt to start Secure Transport while already active
swSecureTransportInactive Attempt to end a non-existent Secure Transport session

To start SECURE TRANSPORT from a Terminal program:

#Include COMPONNT.DEF
Call SecureTransport (P1P2=KeyCID%, algorithm@, Nonce$)

To end SECURE TRANSPORT from a Terminal program:

#Include COMPONNT.DEF
Call SecureTransport (Lc=0, 0, ″″)

8.8 The Command Definition File COMMANDS.DEF

179

8.8 The Command Definition File COMMANDS.DEF
The file COMMANDS.DEF can be found in the directory BasicCardPro\Inc. It contains:

• declarations of all the pre-defined commands;
• definitions of the ZC-Basic SW1-SW2 status codes; and
• definitions of P-Code error codes.

See 8.6 Status Bytes SW1 and SW2 for descriptions of the status and error codes.

Here is the file COMMANDS.DEF:

Rem Pre-defined BasicCard commands

#IfNotDef CommandsDefIncluded ' Prevent multiple inclusion
Const CommandsDefIncluded = True

#Include AlgID.DEF

Declare Command &HC0 &H00 GetState(Lc=0, State@, Version$)
Declare Command &HC0 &H02 EepromSize(Lc=0, Start%, Length%)
Declare Command &HC0 &H04 ClearEeprom(Length%, Disable Le)

Rem Since Version 3.01, the WRITE EEPROM command is no longer supported.
Rem Use it at your own risk!
Rem
Rem Declare Command &HC0 &H06 WriteEeprom(Data$, Disable Le)

Declare Command &HC0 &H08 ReadEeprom(Lc=0, Data$)
Declare Command &HC0 &H0A EepromCRC(Length%)
Declare Command &HC0 &H0A EepromCRC32(Lc=2, CRCHi%, CRCLo%, Le=4)
Declare Command &HC0 &H0C SetState()
Declare Command &HC0 &H0E GetApplicationID(Lc=0, Name$)
Declare Command &HC0 &H10 StartEncryption(RA&, Le=0)
Declare Command &HC0 &H10 ProEncryption(RAHi&, RALo&, Le=0)
Declare Command &HC0 &H10 SMEncryption(Algorithm@, RAHi&, RALo&, Le=0)
Declare Command &HC0 &H10 SMAuthentication(Algorithm@, Le=0)
Declare Command &HC0 &H12 EndEncryption()
Declare Command &HC0 &H14 Echo(S$)
Declare Command &HC0 &H16 AssignNAD()

Rem BasicCard operating system errors

Const swCommandOK = &H9000
Const swRetriesRemaining = &H63C0
Const swEepromWriteError = &H6581
Const swBadEepromHeap = &H6582
Const swBadFileChain = &H6583
Const swKeyNotFound = &H6611
Const swPolyNotFound = &H6612
Const swKeyTooShort = &H6613
Const swKeyDisabled = &H6614
Const swUnknownAlgorithm = &H6615
Const swAlreadyEncrypting = &H66C0
Const swNotEncrypting = &H66C1
Const swBadCommandCRC = &H66C2
Const swDesCheckError = &H66C3
Const swCoprocessorError = &H66C4
Const swAesCheckError = &H66C5
Const swBadSignature = &H66C6
Const swBadAuthenticate = &H66C7
Const swLcLeError = &H6700
Const swCommandTooLong = &H6781
Const swResponseTooLong = &H6782

8. Communications

180180

Const swInvalidState = &H6985
Const swCardUnconfigured = &H6986
Const swNewStateError = &H6987
Const swP1P2Error = &H6A00
Const swOutsideEeprom = &H6A02
Const swDataNotFound = &H6A88
Const swINSNotFound = &H6D00
Const swCLANotFound = &H6E00
Const swInternalError = &H6F00

Rem SW1=&H61 is Le warning:

Const sw1LeWarning = &H61

Rem SW1=&H6C is La warning (T=0 protocol only):

Const sw1LaWarning = &H6C

Rem P-Code interpreter errors (SW1=&H64, SW2=P-Code error)

Const sw1PCodeError = &H64

Const pcStackOverflow = &H01
Const pcDivideByZero = &H02
Const pcNotImplemented = &H03
Const pcBadRamHeap = &H04
Const pcBadEepromHeap = &H05
Const pcReturnWithoutGoSub = &H06
Const pcBadSubscript = &H07
Const pcBadBounds = &H08
Const pcInvalidReal = &H09
Const pcOverflow = &H0A
Const pcNegativeSqrt = &H0B
Const pcDimensionError = &H0C
Const pcBadStringCall = &H0D
Const pcOutOfMemory = &H0E
Const pcArrayNotDynamic = &H0F
Const pcArrayTooBig = &H10
Const pcDeletedArray = &H11
Const pcPCodeDisabled = &H12
Const pcBadSystemCall = &H13
Const pcBadKey = &H14
Const pcBadLibraryCall = &H15
Const pcStackUnderflow = &H16
Const pcInvalidAddress = &H17

Rem Error codes generated by the Terminal

Const swNoCardReader = &H6790
Const swCardReaderError = &H6791
Const swNoCardInReader = &H6792
Const swCardPulled = &H6793
Const swT1Error = &H6794
Const swCardError = &H6795
Const swCardNotReset = &H6796
Const swKeyNotLoaded = &H6797
Const swPolyNotLoaded = &H6798
Const swBadResponseCRC = &H6799
Const swCardTimedOut = &H679A
Const swTermOutOfMemory = &H679B
Const swBadDesResponse = &H679C
Const swInvalidComPort = &H679D
Const swNoPcscDriver = &H679F
Const swPcscReaderBusy = &H67A0
Const swPcscError = &H67A1

8.8 The Command Definition File COMMANDS.DEF

181

Const swComPortBusy = &H67A2
Const swBadATR = &H67A3
Const swT0Error = &H67A4
Const swPTSError = &H67A7
Const swDataOverrun = &H67A8
Const swBadAesResponse = &H67A9
Const swReservedINS = &H6D80
Const swReservedCLA = &H6E80

Rem MuliApplication BasicCard errors
Rem (corresponding to Component Library errors in COMPONNT.DEF)

Const swBadComponentName = &H69C0
Const swComponentNotFound = &H69C1
Const swAccessDenied = &H69C2
Const swComponentAlreadyExists = &H69C3
Const swBadComponentChain = &H69C4
Const swNameTooLong = &H69C5
Const swOutOfMemory = &H69C6
Const swInvalidACR = &H69C7
Const swBadComponentType = &H69C8
'Const swKeyNotFound = &H69CC swKeyNotFound already exists
Const swKeyUsage = &H69CD
Const swKeyAlgorithm = &H69CE
'Const swKeyDisabled = &H69CF swKeyDisabled already exists
Const swTooManyTempFlags = &H69D0
Const swExecutableAcrDenied = &H69D1
Const swApplicationNotFound = &H69D2
Const swACRDepth = &H69D3
Const swBadComponentAttr = &H69D4
Const swBadComponentData = &H69D5
Const swBadAppFile = &H69D6
Const swLoadSequenceActive = &H69D7
Const swLoadSequenceNotActive = &H69D8
Const swLoadSequencePhase = &H69D9
'Const swKeyTooShort = &H69DA swKeyTooShort already exists
'Const swUnknownAlgorithm = &H69DB swUnknownAlgorithm already exists
Const swBadEaxTag = &H69DC
Const swSecureTransportActive = &H69DD
Const swSecureTransportInactive = &H69DE
Const swComponentReferenced = &H69DF
Const swFileNotContiguous = &H69E0
Const swAppFileOpen = &H69E1

#IfDef TerminalProgram

Rem AutoEncryption handles StartEncryption for the different card types.
Rem To use:
Rem Call AutoEncryption (KeyNum@, KeyName$)
Rem Call CheckSW1SW2()
Rem
Rem KeyNum@ is the key number, for all card types. Encrypting for the
Rem MultiApplication BasicCard also requires the key's path name, in
KeyName$.

#Include MISC.DEF
#Include COMPONNT.DEF

Sub AutoEncryption (KeyNum@, KeyName$)

Private TryAES : TryAES = (Len (Key(KeyNum@)) >= 16)
If TryAES Then

Call ProEncryption (P2=KeyNum@, Rnd, Rnd)
If SW1SW2 = swLcLeError Then Call StartEncryption (P2=KeyNum@, Rnd)

8. Communications

182182

Else
Call StartEncryption (P2=KeyNum@, Rnd)

End If

Select Case SW1SW2

Case swUnknownAlgorithm ' Compact BasicCard doesn't support P1=0
Call StartEncryption (P1=&H12, P2=KeyNum@, Rnd)

Case swBadComponentType ' MultiApplication BasicCard
Private CID : CID = FindComponent (ctKey, KeyName$)
Call AddIndexedKey (CID, Key(KeyNum@))
If TryAES Then

Call SMEncryption (P1P2=CID, 0, Rnd, Rnd)
Else

Call SMEncryption (P1P2=CID, Lc=5, 0, Rnd, 0)
End If

End Select

End Sub

Rem Sub SMEncryptionByCID (KeyCID%, KeyVal$, Algorithm@)
Rem Sub SMEncryptionByName (KeyName$, KeyVal$, Algorithm@)
Rem
Rem These procedures activate encryption in the MultiApplication BasicCard.
Rem SMEncryptionByName is simpler; SMEncryptionByCID is faster, saving
Rem a call to FincComponent.

Sub SMEncryptionByCID (KeyCID%, KeyVal$, Algorithm@)

Rem Tell the Terminal program interpreter the value of the key
Call AddIndexedKey (KeyCID%, KeyVal$)

If Algorithm@ < AlgOmacAes128 Then

Rem Encryption algorithm - initialisation data required

If Algorithm@ <= AlgTripleDesCrc Then ' Four-byte initialisation data
Call SMEncryption (P1P2=KeyCID%, Lc=5, Algorithm@, Rnd, 0)

Else ' Eight-byte initialisation data
Call SMEncryption (P1P2=KeyCID%, Algorithm@, Rnd, Rnd)

End If

Else

Rem Authentication algorithm - no initialisation data required
Call SMEncryption (P1P2=KeyCID%, Lc=1, Algorithm@, 0, 0)

End If

End Sub

Sub SMEncryptionByName (KeyName$, KeyVal$, Algorithm@)
Private CID : CID = FindComponent (ctKey, KeyName$)
If SW1SW2 = swCommandOK Then _

Call SMEncryptionByCID (CID, KeyVal$, Algorithm@)
End Sub

#EndIf ' TerminalProgram

#EndIf ' CommandsDefIncluded

183

9. Encryption Algorithms
The Compact BasicCard supports the following two encryption algorithms:

Algorithm
AlgSgLfsr SG-LFSR (Shrinking Generator – Linear Feedback Shift Register)

AlgSgLfsrCrc SG-LFSR with CRC-16

The Enhanced BasicCard supports the following two encryption algorithms:

Algorithm
AlgSingleDes Single DES (Data Encryption Standard, 8-byte key)
AlgTripleDes Triple DES-EDE2 (Data Encryption Standard, 16-byte key)

The Professional and MultiApplication BasicCards support some or all of the following encryption
algorithms:

Algorithm
AlgSingleDesCrc Single DES with CRC (8-byte key)

AlgTripleDesEDE2Crc Triple DES-EDE2 with CRC (16-byte key)
AlgTripleDesEDE3Crc Triple DES-EDE3 with CRC (24-byte key)

AlgAes128 AES-128 (Advanced Encryption Standard, 128-bit key)
AlgAes192 AES-192 (Advanced Encryption Standard, 192-bit key)
AlgAes256 AES-256 (Advanced Encryption Standard, 256-bit key)

AlgEaxAes128 EAX (Authenticated Encryption) using AES-128
AlgEaxAes192 EAX (Authenticated Encryption) using AES-192
AlgEaxAes256 EAX (Authenticated Encryption) using AES-256

AlgOmacAes128 OMAC (One-Key CBC MAC) using AES-128
AlgOmacAes192 OMAC (One-Key CBC MAC) using AES-192
AlgOmacAes256 OMAC (One-Key CBC MAC) using AES-256

This chapter describes these algorithms in detail, to give interested readers the opportunity to evaluate
them. But you don’t need to know how these algorithms work in order to use them; if you only want to
know how to use them from ZC-Basic, skip this chapter and see instead 3.17.1 Implementing
Encryption.

9.1 The DES Algorithm
The DES algorithm is the internationally recognised Data Encryption Standard, defined in the ANSI
standard documents X3.92-1981 (Data Encryption Algorithm) and X3.106-1983 (Data Encryption
Algorithm – Modes of Operation). See these documents for a definition of the DES algorithm itself; for
a fuller treatment, including ‘C’ source code, see Bruce Schneier’s Applied Cryptography (Second
Edition, John Wiley & Sons, Inc., 1996).

As you can see from the dates of the ANSI documents, the DES algorithm is no longer young. In fact,
the original DES algorithm is usually referred to as Single DES, and must now be regarded as less than
completely secure. Special-purpose hardware can be constructed for several tens of thousands of
dollars, that can break Single DES encryption in less than a day. For this reason, stronger versions,
Triple DES-EDE2 and Triple DES-EDE3, have become de facto standards in the banking world.
Triple DES-EDE2 is generally believed to be safe against all currently feasible attacks, and Triple

9. Encryption Algorithms

184184

DES-EDE3 is believed to be safe against any imaginable future attacks. However, Single DES is still
used for protecting confidential but financially worthless data, such as a patient’s medical records.

The original ANSI X3.92 document defines DES as an encryption function that takes a 56-bit, 8-byte
key K and an 8-byte data block P as input, and returns an 8-byte data block C as output:

C = EK (P)

The inverse of this is the DES decryption function:

P = DK (C)

(This notation is taken from Bruce Schneier’s Applied Cryptography: P and C denote plaintext and
ciphertext, E and D are encryption and decryption, and K is the key.)

Note that an 8-byte Single DES key contains only 56 significant bits. This is because the top bit of each
byte is not used. This bit can be used as a parity check, or simply ignored (which is what the BasicCard
does).

The Triple DES-EDE2 algorithm takes a 112-bit, 16-byte key K and splits it into two 8-byte keys KL
and KR. Then the encryption and decryption functions are given by

C = EDE2K (P) = EKL (DKR (EKL (P))) and

P = DED2K (C) = DKL (EKR (DKL (C)))

The Triple DES-EDE3 algorithm takes a 168-bit, 24-byte key K and splits it into three 8-byte keys
K1, K2, and K3. Then the encryption and decryption functions are given by

C = EDE3K (P) = EK3 (DK2 (EK1 (P))) and

P = DED3K (C) = DK1 (EK2 (DK3 (C)))

 (The six functions EK , DK , EDE2K , DED2K , EDE3K , and DED3K can be called directly from ZC-
Basic – see 3.17.7 DES Encryption Primitives.)

Given such encryption and decryption functions, there are several ways that they can be used to encrypt
and decrypt a message of arbitrary length. The method used by the Enhanced BasicCard is described in
the next section.

9.2 Implementation of DES in the BasicCard
Apart from their encryption and decryption functions (E and D versus E3 and D3), the implementations
of Single DES, Triple DES-EDE2, and Triple DES-EDE3 in the BasicCard are identical. To start
with, we need to know how to encrypt a message that is longer than 8 bytes. (All commands and
responses encrypted with DES in the BasicCard are at least 8 bytes long.)

9.2.1 The Message Encryption Functions MEK , MEDE2K , and MEDE3K

The Single DES message encryption function C = MEK (P) is defined as follows. We are given:

• a message P, at least 8 bytes in length;

• an 8-byte key K;

• the Single DES encryption and decryption functions EK and DK ;

• an 8-byte initialisation vector C0 (more about this in 9.2.3 The Initialisation Vector).

First, split the message P into 8-byte blocks P1 , P2 ,..., Pn–1 , plus a final block Pn that may be shorter
than 8 bytes. Pad this final block with m zeroes to a length of 8 bytes (so 0 <= m <= 7). Then compute,
for 1 <= i <= n:

Ci = EK (Ci–1 Xor Pi)

(Note that the initialisation vector C0 is needed to compute C1.) Then throw away the last m bytes of
the penultimate block Cn–1 , and concatenate the resulting blocks C1 ,..., Cn to get the encrypted
ciphertext C.

9.2 Implementation of DES in the BasicCard

185

If we threw away the last m bytes of the last block Cn , then the message C couldn’t be decrypted by its
recipient. But the recipient can reconstruct the last m bytes of Cn–1 , as follows:

The last block is computed from Cn = EK (Cn–1 Xor Pn)

Therefore, DK (Cn) = Cn–1 Xor Pn

which means that Cn–1 = DK (Cn) Xor Pn

But the last m bytes of Pn are all zero, so the last m bytes of Cn–1 are equal to the last m bytes of
DK (Cn), which can be computed without prior knowledge of the plaintext P. This trick is called
ciphertext stealing, and it allows us to keep encrypted messages to their original size.

The Triple DES message encryption functions MEDE2K and MEDE3K are defined in exactly the
same way, except that the key K is 16 or 24 bytes long, and the Triple DES encryption function
EDE2K or EDE3K is substituted for the Single DES function E K.

9.2.2 The Message Decryption Functions MDK , MDED2K , and MDED3K

The Single DES message decryption function P = MDK (C) is the inverse of MEK. First restore the
penultimate block Cn–1 to 8 bytes, as described in the previous section. Then compute, for 1 <= i <= n:

Pi = Ci–1 Xor DK (Ci)

Throw away the last m bytes in Pn (which should all be zero), and concatenate all the resulting blocks
P1 ,..., Pn to get the original plaintext message P.

The Triple DES message decryption functions MDED2K and MDED3K are defined in exactly the
same way, except that the Triple DES decryption function DED2K or DED3K is substituted for the
Single DES function DK.

9.2.3 The Initialisation Vector
The initialisation vector C0 is determined as follows:

For the first command following a START ENCRYPTION command, the initialisation vector C0
depends on the command and response fields of the START ENCRYPTION command:

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 10 algorithm key 04 Random number RA (4 bytes) 04

Response: ODATA SW1 SW2
Random number RB (4 bytes) 90 00

In this case, C0 consists of the first two bytes of RA, followed by all four bytes of RB, followed by the
last two bytes of RA.

For subsequent commands and responses, C0 is simply the last ciphertext block Cn of the previous
message.

9.2.4 Encryption of Commands in the Enhanced BasicCard
A command has the following structure (shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

Encryption consists of the following steps:

• If the Lc or Le fields are absent, insert Lc' = 00 and/or Le' = 00:

CLA INS P1 P2 Lc' IDATA Le'

• Append two zeroes (the resulting command now contains at least 8 bytes):

9. Encryption Algorithms

186186

P = CLA INS P1 P2 Lc' IDATA Le' 00 00

• Encrypt the whole command P, with C = MEK (P) or C = MEDE2K (P):

C

• Wrap the resulting ciphertext C in the original command parameters:

CLA INS P1 P2 Lc' + 8 C Le

The resulting command is 8 bytes longer than the original command. These 8 bytes of redundancy
enable an authentication check to be done: the command parameters CLA INS P1 P2 Lc' Le' 00 00 in
the decrypted command must match the wrapping, otherwise the command is rejected, with SW1-SW2
= swDesCheckError.

9.2.5 Encryption of Responses in the Enhanced BasicCard
A response has the following structure (the shaded block is optional):

ODATA SW1 SW2

Encryption consists of the following steps:

• Append six zeroes:

P = ODATA SW1 SW2 00 00 00 00 00 00

• Encrypt the resulting response P, with C = MEK (P) or C = MEDE2K (P):

C

• Append the original SW1-SW2:

C SW1 SW2

The resulting response is always exactly 8 bytes longer than the original response. As with command
encryption, these 8 bytes of redundancy enable an authentication check to be done on the response: if
the decrypted response doesn’t end with SW1-SW2 followed by six zeroes, the response is rejected,
and SW1-SW2 = swBadDesResponse is returned to the caller in the Terminal program.

Note: If status bytes SW1 SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
sw1LeWarning), then the response is not encrypted.

9.2.6 Encryption of Commands in the Professional BasicCard
The Professional BasicCard required a new encryption algorithm, because the algorithms described
above for the Enhanced BasicCard are not compatible with the T=0 protocol.

A command has the following structure (shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

Encryption consists of the following steps:

• Insert an LeFlag byte: 01 if Le is present, 00 if Le is absent:

9.2 Implementation of DES in the BasicCard

187

CLA INS P1 P2 Lc IDATA LeFlag Le

• If the Le field is absent, append Le' = 00:

CLA INS P1 P2 Lc IDATA LeFlag Le'

• Calculate the 32-bit CRC of the resulting data:

CRC = CRC32 (CLA || INS || P1 || P2 [|| Lc || IDATA] || LeFLag || Le')

The CRC32 function is defined in 7.10.4 CRC Calculations.

• If the Lc field is absent, insert Lc' = 00:

CLA INS P1 P2 Lc' IDATA LeFlag Le'

• Append two zeroes, followed by the CRC (now the command tail P is at least 8 bytes long):

CLA INS P1 P2 Lc' P = IDATA LeFlag Le' 00 00 CRC

• Encrypt the command tail P, with C = MEK (P) , C = MEDE2K (P) , or C = MEDE3K (P):

CLA INS P1 P2 Lc' C

• Adjust Lc', and append Le'':

CLA INS P1 P2 Lc' + 8 C Le''

Le'' is computed as follows (this is where T=0 compatibility comes in):

• If Le was absent, then Le'' = 08
• If Le = 00, then Le'' = 00
• Otherwise, Le'' = Le + 08

The resulting command is 8 or 9 bytes longer than the original command. When the BasicCard receives
the command, it checks that the decrypted command tail P is valid, and that the CRC is correct. If not,
the command is rejected, with SW1-SW2 = swDesCheckError.

9.2.7 Encryption of Responses in the Professional BasicCard
A response has the following structure (the shaded block is optional):

ODATA SW1 SW2

Encryption consists of the following steps:

• Calculate the 32-bit CRC of the response:

CRC = CRC32 ([ODATA ||] SW1 || SW2)

The CRC32 function is defined in 7.10.4 CRC Calculations.

• Append two zeroes and the CRC:

P = ODATA SW1 SW2 00 00 CRC

• Encrypt the resulting response P, with C = MEK (P) , C = MEDE2K (P) , or C = MEDE3K (P):

9. Encryption Algorithms

188188

C

• Append the original SW1-SW2:

C SW1 SW2

The resulting response is 8 bytes longer than the original response. If the decrypted response doesn’t
end in SW1 SW2 00 00 CRC, the response is rejected, and SW1-SW2 = swBadDesResponse is
returned to the caller in the Terminal program.

Note: If status bytes SW1-SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
sw1LeWarning), then the response is not encrypted.

9.3 Certificate Generation Using DES
The ZC-Basic Certificate command is described in 3.17.8 Certificate Generation. The certificate
generation algorithm is as follows:

Let P be the data to be signed. Append the byte 80 to P (this ensures that messages differing only in the
number of trailing zeroes will have different certificates). Split the resulting P into 8-byte blocks P1 ,...,
Pn , padding the last block Pn with zeroes if necessary. Fill the initialisation vector C0 with zeroes, and
then compute, for 1 <= i <= n:

Ci = EDE3K (Ci–1 Xor Pi) (for keys K 24 bytes or longer, if supported)
Ci = EDE2K (Ci–1 Xor Pi) (for keys K 16 bytes or longer)
Ci = EK (Ci–1 Xor Pi) (for keys K shorter than 16 bytes)

The certificate is the final ciphertext block Cn.

9.4 The AES Algorithm
On 28th February 2001, the US National Institute of Standards and Technology announced the
Advanced Encryption Standard (AES), the long-awaited replacement for the DES standard. AES is
described in “Draft Federal Information Processing Standard for the AES”. This document is available
from NIST’s web site, at http://csrc.nist.gov/encryption/aes. AES uses the Rijndael algorithm, designed
by Joan Daemen and Vincent Rijmen, as its cryptographic primitive. In its original specification, the
Rijndael algorithm encrypts and decrypts data blocks of length 128, 192, or 256 bits, using a key of
length 128, 192, or 256 bits. The AES specification fixes the block length at 128 bits (i.e. 16 bytes), but
retains the three key length options.

AES with a 128-bit key length (or AES-128) is considered equal or superior in security to Triple DES.
However, it is roughly six times faster. Longer key lengths are correspondingly more secure. For
details of how to call the AES encryption primitives from a ZC-Basic program, see 7.2 AES: The
Advanced Encryption Standard Library.

9.5 Implementation of AES in the Professional BasicCard
This section parallels 9.2 Implementation of DES in the BasicCard. Here the functions EK and DK
are the AES-xxx encryption and decryption primitives, where xxx is the key length in bits: 128, 192, or
256. To start with, we need to know how to encrypt a message that is longer than 16 bytes. (All
commands and responses encrypted with AES in the BasicCard are at least 16 bytes long.)

9.5.1 The Message Encryption Function AES-MEK

The AES-xxx message encryption function C = AES-MEK (P) is defined as follows. We are given:

• a message P, at least 16 bytes in length;
• a 16-byte key K;

http://csrc.nist.gov/encryption/aes

9.5 Implementation of AES in the Professional BasicCard

189

• the AES- xxx encryption and decryption functions EK and DK ;
• a 16-byte initialisation vector C0 (more about this in 9.5.3 The Initialisation Vector).

First, split the message P into 16-byte blocks P1 , P2 ,..., Pn–1 , plus a final block Pn that may be shorter
than 16 bytes. Pad this final block with m zeroes to a length of 16 bytes (so 0 <= m <= 15). Then
compute, for 1 <= i <= n:

Ci = EK (Ci–1 Xor Pi)

(Note that the initialisation vector C0 is needed to compute C1.) Then throw away the last m bytes of
the penultimate block Cn–1 , and concatenate the resulting blocks C1 ,..., Cn to get the encrypted
ciphertext C. For an explanation of why bytes are discarded from the penultimate block, see the
description of ciphertext stealing in 9.2.1 The Message Encryption Functions MEK and MEK

3 .

9.5.2 The Message Decryption Function AES-MDK

The AES-xxx message decryption function P = AES-MDK (C) is the inverse of AES-MEK. First
restore the penultimate block Cn–1 to 16 bytes, as described for DES in 9.2.1 The Message Encryption
Functions MEK and MEK

3 . Then compute, for 1 <= i <= n:

Pi = Ci–1 Xor DK (Ci)

Throw away the last m bytes in Pn (which should all be zero), and concatenate all the resulting blocks
P1 ,..., Pn to get the original plaintext message P.

9.5.3 The Initialisation Vector
The initialisation vector C0 is determined as follows:

For the first command following a START ENCRYPTION command, the initialisation vector C0
depends on the command and response fields of the START ENCRYPTION command:

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 10 algorithm key 08 Random number RA (8 bytes) 00

Response: ODATA SW1 SW2
algorithm (1 byte); Random number RB (8 bytes) 90 00

In this case, C0 consists of the first four bytes of RA, followed by all eight bytes of RB, followed by
the last four bytes of RA.

For subsequent commands and responses, C0 is simply the last ciphertext block Cn of the previous
message.

9.5.4 Encryption of Commands
A command has the following structure (shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

Encryption consists of the following steps:

• Insert an LeFlag byte: 01 if Le is present, 00 if Le is absent:

CLA INS P1 P2 Lc IDATA LeFlag Le

• If the Le field is absent, append Le' = 00:

CLA INS P1 P2 Lc IDATA LeFlag Le'

• Calculate the 32-bit CRC of the resulting data:

9. Encryption Algorithms

190190

CRC = CRC32 (CLA || INS || P1 || P2 [|| Lc || IDATA] || LeFLag || Le')

The CRC32 function is defined in 7.10.4 CRC Calculations.

• If the Lc field is absent, insert Lc' = 00:

CLA INS P1 P2 Lc' IDATA LeFlag Le'

• Append ten zeroes, followed by the CRC (now the command tail P is at least 16 bytes long):

CLA INS P1 P2 Lc' P = IDATA LeFlag Le' 00 ... 00 CRC

• Encrypt the command tail P, with C = AES-MEK (P):

CLA INS P1 P2 Lc' C

• Adjust Lc', and append Le'':

CLA INS P1 P2 Lc' + 16 C Le''

Le'' is computed as follows:

• If Le was absent, then Le'' = 10
• If Le = 00, then Le'' = 00
• Otherwise, Le'' = Le + 10

The resulting command is 16 or 17 bytes longer than the original command. When the BasicCard
receives the command, it checks that the decrypted command tail P is valid, and that the CRC is
correct. If not, the command is rejected, with SW1-SW2 = swAesCheckError.

9.5.5 Encryption of Responses
A response has the following structure (the shaded block is optional):

ODATA SW1 SW2

Encryption consists of the following steps:

• Calculate the 32-bit CRC of the response:

CRC = CRC32 ([ODATA ||] SW1 || SW2)

The CRC32 function is defined in 7.10.4 CRC Calculations.

• Append ten zeroes and the CRC:

P = ODATA SW1 SW2 00 ... 00 CRC

• Encrypt the resulting response P, with C = AES-MEK (P):

C

• Append the original SW1-SW2:

C SW1 SW2

The resulting response is 16 bytes longer than the original response. If the decrypted response doesn’t
end in SW1 SW2 00...00 CRC, the response is rejected, and SW1-SW2 = swBadAesResponse is
returned to the caller in the Terminal program.

9.6 The EAX Algorithm

191

Note: If status bytes SW1-SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
sw1LeWarning), then the response is not encrypted.

9.6 The EAX Algorithm
EAX is an algorithm for Authenticated Encryption, designed by M.Bellare, P. Rogaway, and D.
Wagner. A brief explanation of the algorithm follows; the full description is available from NIST’s web
site, at http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

The EAX algorithm was designed to achieve the dual aims of secrecy and authentication, using a single
cryptographic key. For encryption it uses the CTR algorithm; for authentication it uses a generalisation
of the OMAC algorithm (described in 9.8 The OMAC Algorithm), which the authors call “tweaked
OMAC”.

The EAX algorithm uses a block cipher EK (B), which operates on blocks B of length n bits. The
choice of block cipher is left to the implementer. ZeitControl’s implementation of EAX uses AES as its
block cipher, with key length 128, 192, or 256 bits; the block length n is equal to 128 bits (16 bytes) in
all cases.

9.6.1 The CTR Algorithm
CTR is short for counter-mode encryption. The CTR algorithm is a standard encryption algorithm, that
takes a Key K and a Nonce N as input parameters, and encrypts a Message M to produce ciphertext C
of the same length as M:

C = CTRK
N (M)

Suppose M = M1 || M2 || ... || Mm, with all blocks (except possibly the last) n bits long. Define

S1 = EK (N), S2 = EK (N + 1), ... , Sm = EK (N + m – 1)

where addition is performed modulo 2n, treating N as an integer 0 ≤ N < 2n. Then let

Ci = Mi Xor Si (1 ≤ i ≤ m)

with Cm truncated to the same length as Mm. Then the ciphertext C is given by

CTRK
N (M) = C1 || C2 || ... || Cm

The Nonce N does not have to be secret, but it must be different for each invocation of CTR for a
given Key K.

9.6.2 Tweaked OMAC
The EAX algorithm requires a parameterised version of the OMAC algorithm, which it calls “tweaked
OMAC”. The parameter is an integer t:

OMACK
t (M) = OMACK ([t]n || M)

where [t]n denotes the n-bit binary representation of t (with most significant bit first).

9.6.3 EAX
Now we can define the EAX algorithm. It takes the following items as input:

• A Key K, for use by the block encryption algorithm EK .

• A Nonce N, of any length. N does not have to be secret, but it must be different for each invocation
of EAX for a given Key K. The BasicCard uses a 16-byte Nonce for the encryption of Commands
and Responses.

• A Header H, of any length. H is authenticated, but not encrypted, by the EAX algorithm. H is
often referred to as Associated Data.

• A Message M, which will be encrypted by the EAX algorithm.

EAX computes as output a ciphertext C and a Tag T, as follows:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

9. Encryption Algorithms

192192

• U = OMACK
0 (N)

• V = OMACK
1 (H)

• C = CTRK
U (M)

• W = OMACK
2 (C)

• T = U Xor V Xor W

We write this as

CT = EAX.EncryptK
N H (M)

C is the same length as M; the Tag T is n bits long. (The full definition of the EAX algorithm, in the
original paper, defines a parameter τ as the length of the desired Tag; T is truncated to τ bits.
ZeitControl’s implementation does not use this parameter.)

The CTR algorithm is its own inverse, so decryption follows the same steps as encryption, with
M = CTRK

U (C) instead of C = CTRK
U (M). After the last step, the recipient can check that the

computed Tag T is equal to the Tag received with the ciphertext. If not, the message is rejected.

9.7 Implementation of EAX in the BasicCard
The EAX algorithm is currently available in Professional BasicCard ZC5.5 and MultiApplication
BasicCard ZC6.5. It has a user-callable interface, described in 7.5 The EAX Library; and it can also
be specified in the START ENCRYPTION command for the authentication of Commands and
Responses. The three constants AlgEaxAes128, AlgEaxAes192, and AlgEaxAes256 are defined in the
file AlgID.DEF for this purpose.

This section describes the encryption of Commands and Responses using EAX.

9.7.1 The Nonce
The Nonce N is always 16 bytes long. It is determined as follows:

For the first command following a START ENCRYPTION command, N depends on the command
and response fields of the START ENCRYPTION command:

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 10 algorithm key 08 Random number RA (8 bytes) 09

Response: ODATA SW1 SW2
algorithm (1 byte); Random number RB (8 bytes) 90 00

In this case, N consists of the first four bytes of RA, followed by all eight bytes of RB, followed by the
last four bytes of RA.

For subsequent commands and responses, N is simply the Tag field T of the previous message.

9.7.2 Encryption of Commands
A command has the following structure (shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

Encryption consists of the following steps:

• If Le is absent, set Le' = 16; if Le is zero, set Le' = 0; otherwise set Le' = Le+16:

CLA INS P1 P2 Lc IDATA Le'

9.8 The OMAC Algorithm

193

• If Lc is absent, set Lc' = 16; otherwise set Lc' = Lc+16:

CLA INS P1 P2 Lc' IDATA Le'

• Authenticate CLA || INS || P1 || P2 || Lc' || Le', encrypt the IDATA field, and compute the Tag T:

H = CLA || INS || P1 || P2 || Lc' || Le'
CT = EAX.EncryptK

N H (IDATA)

• Replace IDATA with C, and insert the Tag T:

CLA INS P1 P2 Lc' C T Le'

Then, if the T=0 protocol is active, the last byte of T is replaced by Le'. The resulting command is 16-
18 bytes longer than the original command. When the BasicCard receives the command, it checks that
the EAX Tag T is correct. If not, the command is rejected, with SW1-SW2 = swAesCheckError.

9.7.3 Encryption of Responses
A response has the following structure (the shaded block is optional):

ODATA SW1 SW2

Encryption consists of the following steps:

• Authenticate SW1-SW2, encrypt the ODATA field, and compute the Tag T:

H = SW1 || SW2
CT = EAX.EncryptK

N H (ODATA)

• Replace ODATA with C, and insert the Tag T:

C T SW1 SW2

The resulting response is 16 bytes longer than the original response. If the EAX Tag T is incorrect, the
response is rejected, and SW1-SW2 = swBadAesResponse is returned to the caller in the Terminal
program.

Note: If status bytes SW1-SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
sw1LeWarning), then the response is not authenticated.

9.8 The OMAC Algorithm
The OMAC algorithm, designed by Tetsu Iwata and Kaoru Kurosawa, is a Message Authentication
algorithm: it computes a Tag T = OMACK (M) from a Message M using a Key K. This Tag
authenticates M to anybody who knows K. In other words, if I receive a Message M and a Tag T, with
T equal to OMACK (M), then I can be sure that

• K was known by whoever computed T;
• M has not been changed since it was used to compute T.

Only the Key K needs to be kept secret; M and T can be sent unencrypted.

We give a brief explanation of the OMAC algorithm here; a full description is available from NIST’s
web site, at http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/. (In the published description,
algorithms OMAC1 and OMAC2 are defined; we describe here the OMAC1 variant, as used by the
BasicCard and by the EAX algorithm.)

The OMAC algorithm uses a block cipher EK (B), which operates on blocks B of length n bits. The
choice of block cipher is left to the implementer. ZeitControl’s implementation of OMAC uses AES as

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

9. Encryption Algorithms

194194

its block cipher, with key length 128, 192, or 256 bits; the block length n is equal to 128 bits (16 bytes)
in all cases.

OMAC is an abbreviation for “One-key CBC MAC”. CBC MAC is a Message Authentication
algorithm that requires the length of the Message M to be a multiple of n bits; so we can write

M = M1 || M2 || ... || Mm

where each M i is n bits long. Then we define

C0 = 0n (0n denotes the block consisting of n zero bits)
Ci = EK (M i Xor Ci–1) (1 ≤ i ≤ m)
CBCK (M) = Cm

If M is not a multiple of n bits, we must pad it in some way. Appending zeroes is not good enough; it
would fail to distinguish between messages differing only in their number of trailing zeroes. One
simple method is to append 1, followed by enough zeroes to bring the length to a multiple of n. The
disadvantage of this method is that it may require an extra call to the block encryption algorithm EK .
The OMAC algorithm avoids this extra call at the cost of increased theoretical complexity, but with
negligible practical overhead. Let u be any non-zero element of the finite field GF(2n), and let L =
EK (0n); we can interpret L as an element of the field, and multipy it by u to get Lu, Lu2 etc. The
reason for introducing the field GF(2n) is that it allows a concrete proof of security to be given;
interested readers can consult the published description on the above web site. In practice, when n is
equal to 128 we can choose u so that multiplication by u reduces to the following simple procedure:

• rotate L left by one bit;
• if the least significant bit is now 1, then Xor the least significant byte with 86.

(The computation of L requires a call to the block encryption algorithm EK , which we were supposed
to be trying to avoid; but this call is only required once for a given K, after which L can be re-used for
subsequent messages.)

Now we can define the padding function. Suppose M = M1 || M2 || ... || Mm, with all blocks (except
possibly the last) n bits long. (If M itself is zero bits long, set m=1 and let Mm be the empty block.)
Then if |Mm| is equal to n, set P = Mm Xor Lu; otherwise, pad Mm to length n by appending a 1
followed by n – |Mm| – 1 zeroes, and set P = (Mm || 100...00) Xor Lu2. Then

PadK (M) = M1 || M2 || ... || Mm–1 || P

The OMAC algorithm computes the following n-bit Tag:

OMACK (M) = CBCK (PadK (M))

9.9 Implementation of OMAC in the BasicCard
The OMAC algorithm is currently available in Professional BasicCard ZC5.5 and MultiApplication
BasicCard ZC6.5. It has a user-callable interface, described in 7.6 The OMAC Library; and it can
also be specified in the START ENCRYPTION command for the authentication of Commands and
Responses. The three constants AlgOmacAes128, AlgOmacAes192, and AlgOmacAes256 are defined
in the file AlgID.DEF for this purpose.

This section describes the authentication of Commands and Responses using OMAC.

9.9.1 Authentication of Commands
A command has the following structure (shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

Authentication consists of the following steps:

9.10 The SG-LFSR Algorithm

195

• If Le is absent, set Le' = 16; if Le is zero, set Le' = 0; otherwise set Le' = Le+16:

CLA INS P1 P2 Lc IDATA Le'

• If Lc is absent, set Lc' = 16; otherwise set Lc' = Lc+16:

CLA INS P1 P2 Lc' IDATA Le'

• Calculate the OMAC Tag of the resulting data:

T = OMACK (CLA || INS || P1 || P2 || Lc' [|| IDATA] || Le')

• Append T to IDATA:

CLA INS P1 P2 Lc' IDATA T Le'

Then, if the T=0 protocol is active, the last byte of T is replaced by Le'. The resulting command is 16-
18 bytes longer than the original command. When the BasicCard receives the command, it checks that
the OMAC Tag T is valid. If not, the command is rejected, with SW1-SW2 = swAesCheckError.

9.9.2 Authentication of Responses
A response has the following structure (the shaded block is optional):

ODATA SW1 SW2

Authentication consists of the following steps:

• Calculate the OMAC Tag of the response:

T = OMACK ([ODATA ||] SW1 || SW2)

• Append T to ODATA:

ODATA T SW1 SW2

The resulting response is 16 bytes longer than the original response. If the OMAC Tag T is incorrect,
the response is rejected, and SW1-SW2 = swBadAesResponse is returned to the caller in the Terminal
program.

Note: If status bytes SW1-SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
sw1LeWarning), then the response is not authenticated.

9.10 The SG-LFSR Algorithm
This algorithm was designed by D. Coppersmith, H. Krawczyk, and Y. Mansour (“The Shrinking
Generator”, Advances in Cryptology – CRYPTO ’93 Proceedings, Springer-Verlag, 1994). It uses two
Linear Feedback Shift Registers, A and S, to generate a stream of bits: the registers are run in parallel
until register S generates a 1 bit, at which point the bit generated simultaneously by register A is used
as the next bit in the stream.

The Compact BasicCard implements this algorithm with Linear Feedback Shift Registers A and S of
length 31 and 32 respectively. In order for the system to be secure against attack with registers of this
size, it is necessary to use generating polynomials PolyA and PolyS that are unknown to the attacker.
To this end, we supply a program for the generation of random cryptographic keys and primitive
polynomials – see 6.9.4 The Key Generator KEYGEN.EXE.

C++ source code for the SG-LFSR algorithm is provided in the development kit, in the directory
BasicCardPro\Source\SG-LFSR.

9. Encryption Algorithms

196196

9.11 Implementation of SG-LFSR in the Compact BasicCard
The BasicCard implementation uses primitive polynomials PolyA and PolyS of degree 31 and 32
respectively, and a cryptographic key K, all of which are known only to the two communicating
parties. (The KEYGEN program generates random polynomials and keys – see 6.9.4 The Key
Generator KEYGEN.EXE.) The START ENCRYPTION command is called to enable encryption:

Command syntax: CLA INS P1 P2 Lc IDATA Le
C0 10 algorithm key 04 Random number RA (4 bytes) 04

Response: ODATA SW1 SW2
Random number RB (4 bytes) 90 00

The caller and responder both contribute 4-byte random numbers to the register initialisation procedure.
RA may take any value; for maximum security, a different RA should be generated for each session.
RB is generated by the BasicCard.

To describe how the encryption mechanism is initialised, we split all the parts into two-byte words:
RA(0):RA(1), RB(0):RB(1), and K(0):K(1):K(2):K(3), where K is the (eight-byte) key number key.

Then the two registers A and S are initialised as follows:

A(0) = (RA(0) Xor K(0)) And &H7FFF
A(1) = RB(0) Xor K(1)
S(0) = RB(1) Xor K(2)
S(1) = RA(1) Xor K(3)

So the initial value of each register depends on both of the random numbers, and on the key.

Zero is an invalid initialisation value, so as a final step:

If A(0) = 0 And A(1) = 0 Then A(1) = 1
If S(0) = 0 And S(1) = 0 Then S(1) = 1

Encryption starts with the first command after the START ENCRYPTION command is received, and
remains in effect for commands and responses until an END ENCRYPTION command is received
(the responses to the START ENCRYPTION and END ENCRYPTION commands themselves are
not encrypted). A ZC-Basic command can tell what kind of encryption is currently active, by looking at
the pre-defined variables Encryption (the algorithm ID) and KeyNumber. (If encryption is currently
inactive, then Encryption is zero.) Encryption and decryption are identical, and consist of Xor-ing
each byte with the result of the function SG_LFSR::GetByte() (defined in the C++ source file
BasicCardPro\Source\SG-LFSR\sg_lfsr.cpp).

A command has the following structure (shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

Only the data field IDATA is encrypted. The command bytes CLA, INS, P1, P2, Lc, and Le are not
encrypted, for two reasons:

• The value of these bytes is often predictable. The number of predictable bytes that are encrypted
should be kept as low as possible, to make it harder to break the key.

• Compatibility with ISO standards is lost if these bytes are altered.

A response has the following structure (the shaded block is optional):

ODATA SW1 SW2

Again, only the data field ODATA is encrypted. The status bytes SW1 and SW2 are not encrypted.

9.12 SG-LFSR with CRC

197

9.12 SG-LFSR with CRC
The SG-LFSR algorithm is simple to implement, and runs efficiently. However, it provides no
authentication for the data it encrypts – I don’t need to know the key in order to send encrypted
messages. It’s true that I won’t know what I’m sending, and I won’t understand the response. But I
could still cause problems by sending random data. If authentication is important (and it usually is),
then you should use encryption algorithm 12: SG-LFSR with CRC (Cyclic Redundancy Check). The
same 16-bit CRC is used as in the EEPROM CRC command. ‘C’ source code for calculating the CRC
is given in 7.10.4 CRC Calculations.

A command has the following structure (shaded blocks are optional):

CLA INS P1 P2 Lc IDATA Le

It is encrypted as follows:

• A two-byte random number Rc is appended to IDATA, and Lc is amended accordingly. (Without
this random number, the CRC would be predictable in the case of a command with no IDATA
field. As the CRC is later encrypted, we want to avoid this.)

CLA INS P1 P2 Lc+2 IDATA Rc Le

• The CRC is calculated over the whole of the resulting message (CLA INS P1 P2 Lc+2 IDATA
Rc Le). It is then appended to the two-byte random number, and Lc is updated accordingly.

CLA INS P1 P2 Lc+4 IDATA Rc CRC Le

• The resulting message is encrypted using SG-LFSR, as described in section 9.11.

A response has the following structure (the shaded block is optional):

ODATA SW1 SW2

It is encrypted in a similar fashion:

• A two-byte random number Rr is appended to ODATA.

ODATA Rr SW1 SW2

• The CRC is calculated over the whole of the resulting response (ODATA Rr SW1 SW2), and
appended to the two-byte random number.

ODATA Rr CRC SW1 SW2

• The resulting response is encrypted using SG-LFSR, as described in section 9.11.

Note: If status bytes SW1-SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
sw1LeWarning), then the response is not encrypted.

9.13 Encryption – a Worked Example
This section shows the progression from ZC-Basic source code to encrypted messages. All source files
are supplied with the software development kit, in the BasicCardPro\Examples\EchoTest
directory. Two encryption algorithms are exhibited: AlgTripleDesEDE2Crc (Triple DES-EDE2 with
CRC) and AlgEaxAes192 (EAX using AES-192).

9. Encryption Algorithms

198198

9.13.1 The Source Code
We ran the KEYGEN program to generate cryptographic keys and a pair of primitive polynomials:

KEYGEN TestKeys –K108 -K116(16) -K124(24) –K132(32) -P

This produced output file TestKeys.bas:

Declare Polynomials = &H4CE8CE37,&HBCE65374
Declare Key 108 = &H03,&HAF,&H59,&H92,&HC9,&HE5,&H0D,&HC6
Declare Key 116(16) = &H1D,&HE1,&HFA,&HB0,&HC8,&H1F,&HC2,&HE6,_

&H95,&H3B,&H46,&H1C,&HE7,&HFD,&HCB,&H53
Declare Key 124(24) = &HD6,&HB4,&HCE,&HAC,&H3A,&H43,&H62,&H88,_

&HEF,&H0B,&HAD,&HF0,&H41,&H6D,&HED,&H74,_
&H2A,&H01,&H73,&H27,&HD3,&H7F,&HCE,&H15

Declare Key 132(32) = &HC7,&H5D,&HB1,&H37,&H52,&HC0,&HB6,&HFF,_
&H2E,&H9D,&H55,&H06,&HD2,&H07,&H81,&H57,_
&HAC,&H0C,&H81,&H73,&H27,&HB9,&HD4,&H1C,_
&H05,&H76,&H6D,&H52,&H0D,&H40,&H21,&H67

Then we wrote a simple ZC-Basic Terminal program EchoTest.bas to send encrypted ECHO
commands. The EchoTest program takes a list of algorithm names as parameters. The BasicCard
source file, EchoCard.bas, reduces to just the following statements if compiled for a single-application
BasicCard:

#Include TestKeys.bas
Declare ApplicationID = "Single-application EchoTest"

The file Compile.bat in the BasicCardPro\Examples\EchoTest directory compiles the
EchoTest.bas source file, along with a separate BasicCard image file for each card type.

Executing Sim.bat from this directory tests all encryption algorithms, for all card types, and generates
log files for each run. We will look at a simpler example, generated by executing DocGen.bat:

..\..\ZCMSim -CPro -LExample EchoTest AlgNone AlgTripleDesEDE2Crc AlgEaxAes192

This sends three ECHO commands:

• unencrypted;
• using Triple DES-EDE2 with CRC;
• using EAX with AES-192.

This creates the log file Example.log:

Port 1
ATR: 3B FB 13 00 FF 81 31 80 75 5A 43 35 2E 35 20 52 45 56 20 45 61
-> 00 00 05 C0 0E 00 00 00 CB
<- 00 00 1D 53 69 6E 67 6C 65 2D 61 70 70 6C 69 63 61 74 69 6F 6E

20 45 63 68 6F 54 65 73 74 61 1B 3D
-> 00 40 09 C0 14 01 00 03 61 62 63 03 FC
<- 00 40 05 62 63 64 90 00 B0
-> 00 00 0A C0 10 24 74 04 9C 13 E7 F7 00 11
<- 00 00 07 24 29 72 6A 36 61 05 40
-> 00 40 11 C0 14 01 00 0B 4D 0F 9C 3E A8 19 68 C8 01 85 19 0B E8
<- 00 40 0D EF 0A F4 EB 4F 28 9D AF AE F4 3A 90 00 12
-> 00 00 0E C0 12 00 00 08 0F 73 E5 9E 4E FD 68 CA 08 CA
<- 00 00 02 90 00 92
-> 00 40 0E C0 10 42 7C 08 E0 0A 92 C8 11 F8 ED 54 00 48
<- 00 40 0B 42 D8 C5 67 B3 28 8D B0 79 61 09 C4
-> 00 00 19 C0 14 01 00 13 42 4B 97 15 2C 56 AD C5 D6 00 81 1D 99

5B 20 45 6A A3 47 13 36
<- 00 00 15 2B 58 1C 6E D8 31 47 57 6C 33 A3 FF 8C 89 26 17 30 D5

A2 90 00 0D
-> 00 40 16 C0 12 00 00 10 CE C0 E4 7D 8B 47 F3 9B E8 E9 3D 5D ED

72 60 5D 10 74
<- 00 40 02 90 00 D2

9.13 Encryption – a Worked Example

199

Note: If you run the EchoTest program yourself, your log file will be different, due to the different
random numbers generated by the Terminal program interpreter.

If we strip the T=1 protocol bytes NAD PCB LEN . . . LRC from each command and response, we get
the following:

� ATR: 3B FB 13 00 FF 81 31 80 75 5A 43 35 2E 35 20 52 45 56 20 45 61
� -> C0 0E 00 00 00

<- 53 69 6E 67 6C 65 2D 61 70 70 6C 69 63 61 74 69 6F 6E 20 45 63
68 6F 54 65 73 74 61 1B

� -> C0 14 01 00 03 61 62 63 03
<- 62 63 64 90 00

� -> C0 10 24 74 04 9C 13 E7 F7 00
<- 24 29 72 6A 36 61 05

� -> C0 14 01 00 0B 4D 0F 9C 3E A8 19 68 C8 01 85 19 0B
<- EF 0A F4 EB 4F 28 9D AF AE F4 3A 90 00

� -> C0 12 00 00 08 0F 73 E5 9E 4E FD 68 CA 08
<- 90 00

	 -> C0 10 42 7C 08 E0 0A 92 C8 11 F8 ED 54 00
<- 42 D8 C5 67 B3 28 8D B0 79 61 09

 -> C0 14 01 00 13 42 4B 97 15 2C 56 AD C5 D6 00 81 1D 99 5B 20 45
6A A3 47 13

<- 2B 58 1C 6E D8 31 47 57 6C 33 A3 FF 8C 89 26 17 30 D5 A2 90 00
� -> C0 12 00 00 10 CE C0 E4 7D 8B 47 F3 9B E8 E9 3D 5D ED 72 60 5D

10
<- 90 00

� ATR (Answer To Reset) from the simulated BasicCard, including the text “ZC5.5 REV E”
� GET APPLICATION ID command and response
� ECHO command and response
� START ENCRYPTION command (algorithm = &H24 = AlgTripleDesEDE2Crc) and response
� ECHO command and response, encrypted with AlgTripleDesEDE2Crc
� END ENCRYPTION command and response
	 START ENCRYPTION command (algorithm = &H42 = AlgEaxAes192) and response

 ECHO command and response, encrypted with AlgEaxAes192
� END ENCRYPTION command and response

We will look at these commands one by one.

9.13.2 GET APPLICATION ID Command and Response
The EchoTest program calls GET APPLICATION ID to find out whether it is dealing with a single-
application BasicCard or a MultiApplication BasicCard:

Command: CLA INS P1 P2 Le
C0 0E 00 00 00

Response: ODATA SW1 SW2
“Single-application EchoTest” 61 1B

The BasicCard returns “Single-application EchoTest”, declared in EchoCard.bas.

9.13.3 Unencrypted ECHO Command and Response
The parameter “abc” is 61 62 63 in hexadecimal. The ECHO command adds P1=01 to every byte:

Command: CLA INS P1 P2 Lc IDATA Le
C0 14 01 00 03 61 62 63 03

9. Encryption Algorithms

200200

Response: ODATA SW1 SW2
62 63 64 90 00

9.13.4 START ENCRYPTION (Algorithm = AlgTripleDesEDE2Crc)
The Rnd function in the Terminal program returned RA = &H4E9225DB, and the random-number
generator in the BasicCard operating system returned RB = &H29726A36. This led to the following
START ENCRYPTION command-response pair (the first byte of ODATA confirms the choice of
algorithm):

Command: CLA INS P1 P2 Lc IDATA Le
C0 10 24 74 04 9C 13 E7 F7 00

Response: ODATA SW1 SW2
24 29 72 6A 36 61 05

We build the initialisation vector C0 from RA and RB, as described in section 9.2.3:

C0 = 9C 13 29 72 6A 36 E7 F7

9.13.5 Encrypted ECHO Command (Algorithm = AlgTripleDesEDE2Crc)
The unencrypted ECHO command:

Command: CLA INS P1 P2 Lc IDATA Le
C0 14 01 00 03 61 62 63 03

• Insert an LeFlag byte:

CLA INS P1 P2 Lc IDATA LeFlag Le
C0 14 01 00 03 61 62 63 01 03

• Calculate the 32-bit CRC of the resulting data:

CRC = CRC32 (C0 14 01 00 03 61 62 63 01 03) = &H9D95964E

• Append two zeroes, followed by the CRC:

CLA INS P1 P2 Lc IDATA LeFlag Le CRC
C0 14 01 00 03 61 62 63 01 03 00 00 9D 95 96 4E

• Now we must encrypt the command tail

P = 61 62 63 01 03 00 00 9D 95 96 4E

using the Triple DES message encryption function MEDE2K . Referring back to 9.2.1 The
Message Encryption Functions MEK , MEDE2K , and MEDE3K :

K = 1D E1 FA B0 C8 1F C2 E6 95 3B 46 1C E7 FD CB 53
is key number 116 from TestKeys.bas;

C0 = 9C 13 29 72 6A 36 E7 F7 from the START ENCRYPTION command;
P1 = 61 62 63 01 03 00 00 9D is the first message block;
P2 = 95 96 4E (00 00 00 00 00) is the second message block;
m = 5 is the length of padding required in P2 .

So we compute (you can check these in ZC-Basic, using the DES function):
C1 = EDE2K (C0 Xor P1) = EDE2K (FD 71 4A 73 69 36 E7 6A) = 4D 0F 9C 01 35 81 DA E8
C2 = EDE2K (C1 Xor P2) = EDE2K (D8 99 D2 01 35 81 DA E8) = 3E A8 19 68 C8 01 85 19

9.13 Encryption – a Worked Example

201

and we throw away the last m bytes of C1 to get:

C = MEDE2K (P) = 4D 0F 9C 3E A8 19 68 C8 01 85 19

• To get the final version, C is wrapped in the original CLA INS P1 P2 . . . Le, with Lc and Le
adjusted appropriately:

CLA INS P1 P2 Lc C Le
C0 14 01 00 0B 4D 0F 9C 3E A8 19 68 C8 01 85 19 0B

The unencrypted response to the ECHO command:

Response: ODATA SW1 SW2
62 63 64 90 00

• Calculate the 32-bit CRC of the response:

CRC = CRC32 (62 63 64 90 00) = &HCF2CB422

• Append two zeroes and the CRC:

ODATA SW1 SW2
62 63 64 90 00 00 00 CF 2C B4 22

• Encrypt P = 62 63 64 90 00 00 00 CF 2C B4 22 using MEDE2K , where
K = 1D E1 FA B0 C8 1F C2 E6 95 3B 46 1C E7 FD CB 53

is key number 116 from TestKeys.bas;
C0 = 3E A8 19 68 C8 01 85 19 is C2 from the ECHO command just received;
P1 = 62 63 64 90 00 00 00 CF is the first message block;
P2 = 2C B4 22 (00 00 00 00 00) is the second message block;
m = 5 is the length of padding required in P2 .

So we compute:
C1 = EDE2K (C0 Xor P1) = EDE2K (5C CB 7D F8 C8 01 85 D6) = EF 0A F4 E4 7F A9 43 AC
C2 = EDE2K (C1 Xor P2) = EDE2K (C3 BE D6 E4 7F A9 43 AC) = EB 4F 28 9D AF AE F4 3A

and we throw away the last m bytes of C1 to get:

C = MEDE2K (P) = EF 0A F4 EB 4F 28 9D AF AE F4 3A

• Now the original SW1-SW2 are appended, to get:

C SW1 SW2
EF 0A F4 EB 4F 28 9D AF AE F4 3A 90 00

9.13.6 END ENCRYPTION
The unencrypted END ENCRYPTION command:

Command: CLA INS P1 P2
C0 12 00 00

9. Encryption Algorithms

202202

• Insert an LeFlag byte and append Le' = 00:

CLA INS P1 P2 LeFlag Le'
C0 12 00 00 00 00

• Calculate the 32-bit CRC of the resulting data:

CRC = CRC32 (C0 12 00 00 00 00) = &H13ED6700

• Insert Lc' = 00, and append two zeroes followed by the CRC:

CLA INS P1 P2 Lc' LeFlag Le'
C0 12 00 00 00 00 00 00 00 13 ED 67 00

• Encrypt the command tail P = 00 00 00 00 13 ED 67 00 with MEDE2K , where
K = 1D E1 FA B0 C8 1F C2 E6 95 3B 46 1C E7 FD CB 53

is key number 116 from TestKeys.bas;
C0 = EB 4F 28 9D AF AE F4 3A is C2 from the ECHO response;
P1 = 00 00 00 00 13 ED 67 00 is the only message block;
m = 0 is the length of padding required in P1 .

So we compute:

C1 = EDE2K (C0 Xor P1) = EDE2K (EB 4F 28 9D BC 43 93 3A) = 0F 73 E5 9E 4E FD 68 CA

and C = MEDE2K (P) is simply C1 .

• Append Le'' = 08 to get the final version:

CLA INS P1 P2 Lc C Le''
C0 12 00 00 08 0F 73 E5 9E 4E FD 68 CA 08

The response is not encrypted:

Response: SW1 SW2
90 00

9.13.7 START ENCRYPTION (Algorithm = AlgEaxAes192)
The two calls to the Rnd function in the Terminal program returned &HE00A92C8 and
&H11F8ED54, giving RA = E0 0A 92 C8 11 F8 ED 54; and the random-number generator in the
BasicCard operating system returned RB = D8 C5 67 B3 28 8D B0 79. This led to the following
START ENCRYPTION command-response pair (the first byte of ODATA confirms the choice of
algorithm):

Command: CLA INS P1 P2 Lc IDATA Le
C0 10 42 7C 08 E0 0A 92 C8 11 F8 ED 54 00

Response: ODATA SW1 SW2
42 D8 C5 67 B3 28 8D B0 79 61 09

We build the Nonce N from RA and RB, as described in section 9.7.1:

N = E0 0A 92 C8 D8 C5 67 B3 28 8D B0 79 11 F8 ED 54

9.13 Encryption – a Worked Example

203

9.13.8 Encrypted ECHO Command (Algorithm = AlgEaxAes192)
The unencrypted ECHO command:

Command: CLA INS P1 P2 Lc IDATA Le
C0 14 01 00 03 61 62 63 03

• Set Le' = Le+10, Lc' = Lc+10:

CLA INS P1 P2 Lc' IDATA Le'
C0 14 01 00 13 61 62 63 13

• Set H = CLA || INS || P1 || P2 || Lc' || Le' = C0 14 01 00 13 13, encrypt IDATA, and compute
the Tag T:

CT = EAX.EncryptK
N H (IDATA)

You can compute C and T in a ZC-Basic Terminal program, using the EAX System Library:

#Include EAX.DEF
#Include TestKeys.bas

Private N$ = Chr$(&HE0,&H0A,&H92,&HC8,&HD8,&HC5,&H67,&HB3,_
&H28,&H8D,&HB0,&H79,&H11,&HF8,&HED,&H54)

Private H$ = Chr$(&HC0,&H14,&H01,&H00,&H13,&H13)
Private C$ = Chr$(&H61,&H62,&H63)

Private EaxState$: EaxState$ = EaxInit (192, Key(124))
Call EaxProvideNonce (EaxState$, Key(124), N$)
Call EaxProvideHeader (EaxState$, Key(124), H$)
Call EAXComputeCiphertext (EaxState$, Key(124), C$)

Private T$: T$ = EaxComputeTag (EaxState$, Key(124))

We get:

C = 42 4B 97
T = 15 2C 56 AD C5 D6 00 81 1D 99 5B 20 45 6A A3 47

So the encrypted command is:

CLA INS P1 P2 Lc' C
C0 14 01 00 13 42 4B 97

T Le'
15 2C 56 AD C5 D6 00 81 1D 99 5B 20 45 6A A3 47 13

The unencrypted response to the ECHO command:

Response: ODATA SW1 SW2
62 63 64 90 00

• Set N equal to T from the START ENCRYPTION command:

N = 15 2C 56 AD C5 D6 00 81 1D 99 5B 20 45 6A A3 47

• Set H = SW1 || SW2 = 90 00, encrypt ODATA, and compute the Tag T:

CT = EAX.EncryptK
N H (ODATA)

9. Encryption Algorithms

204204

We get:

C = 2B 58 1C
T = 6E D8 31 47 57 6C 33 A3 FF 8C 89 26 17 30 D5 A2

So the encrypted response is:

C T SW1 SW2
2B 58 1C 6E D8 31 47 57 6C 33 A3 FF 8C 89 26 17 30 D5 A2 90 00

9.13.9 END ENCRYPTION
The unencrypted END ENCRYPTION command:

Command: CLA INS P1 P2
C0 12 00 00

• Set N equal to T from the ECHO response:

N = 6E D8 31 47 57 6C 33 A3 FF 8C 89 26 17 30 D5 A2

• Insert Le' = 10, Lc' = 10:

CLA INS P1 P2 Lc' Le'
C0 12 00 00 10 10

• Set H = CLA || INS || P1 || P2 || Lc' || Le' = C0 12 00 00 10 10, and compute the Tag T:

CT = EAX.EncryptK
N H (“”)

We get:

T = CE C0 E4 7D 8B 47 F3 9B E8 E9 3D 5D ED 72 60 5D

So the encrypted command is:

CLA INS P1 P2 Lc'
C0 12 00 00 10

T Le'
CE C0 E4 7D 8B 47 F3 9B E8 E9 3D 5D ED 72 60 5D 10

205

10. The ZC-Basic Virtual Machine
Note: Throughout this chapter, bold numbers are hexadecimal.

10.1 The BasicCard Virtual Machine

10.1.1 The Compact BasicCard
The Compact BasicCard contains 100 bytes of RAM (= 256 in decimal), and 3E0 bytes of EEPROM
(= 992 in decimal). Of this, the operating system uses the first 47 bytes of RAM and the first 23 bytes
of EEPROM. The memory available for use by an application written in ZC-Basic is thus B9 bytes of
RAM and 3BD bytes of EEPROM.

10.1.2 The Enhanced BasicCard
The Enhanced BasicCard contains 100 bytes of RAM (= 256 in decimal), and up to 3FE0 bytes of
EEPROM (= 16352 in decimal). Of this, the operating system uses the first 6B bytes of RAM, and the
first 15D bytes of EEPROM. If the file system is not disabled, it requires 7 bytes of RAM, plus 6 bytes
for each file slot. (Files and directories themselves are allocated from the EEPHEAP region.)

10.1.3 The Professional BasicCard
The Professional BasicCard contains up to 800 bytes of RAM (= 2048 in decimal), and up to 7FE0
bytes of EEPROM (= 32736 in decimal). The amount of RAM and EEPROM used by the operating
system varies from version to version, but the figures in 10.1.2 The Enhanced BasicCard give a rough
guide.

10.1.4 The MultiApplication BasicCard
The MultiApplication BasicCard contains up to 800 bytes of RAM (= 2048 in decimal), and up to
7FE0 bytes of EEPROM (= 32736 in decimal). The amount of RAM and EEPROM used by the
operating system varies from version to version, but the figures in 10.1.2 The Enhanced BasicCard
give a rough guide. When an Application’s ZC-Basic code runs in the MultiApplication BasicCard, all
addresses are virtual; this lets the operating system protect an Application from unauthorised access by
other Applications in the same card.

10.1.5 Memory Layout in the BasicCard
RAM and EEPROM are divided into regions, in the following order:

RAM Regions EEPROM Regions

RAMSYS System RAM EEPSYS System EEPROM
STACK The P-Code stack STRVAL Single-to-String code*

RAMDATA Public and Static data CMDTAB Command descriptor table
RAMHEAP Run-time memory allocation PCODE The ZC-Basic program code
FILEINFO Open file slots + file system workspace STRCON String constants
(FRAME) Procedure frame (contained in STACK) KEYTAB Keys for encryption

EEPDATA Eeprom data
EEPHEAP Run-time memory allocation

Libraries Plug-In Libraries

* The STRVAL region is only present for Enhanced BasicCard programs that use Single-to-String
conversion – see 3.23.5 Single-to-String Conversion.

10. The ZC-Basic Virtual Machine

206206

The ZC-Basic compiler calculates how much static memory is required for each region, and assigns
any remaining memory to RAMHEAP and EEPHEAP, for run-time memory allocation of strings,
arrays, and files. The map file lists the sizes of all these regions – see 11.5 Map File Format.

10.2 The Terminal Virtual Machine
A Terminal program contains a CODE segment and a DATA segment, each of which may be up to 64
kilobytes long. The CODE segment contains only the PCODE region. The DATA segment contains
RAM and EEPROM regions (see 2.2.4 Permanent Data for the meaning of EEPROM data in a
Terminal program). The regions occur in the following order (RAM before EEPROM):

RAM Regions EEPROM Regions

STACK The P-Code stack EEPDATA Eeprom data
RAMSYS System RAM EEPHEAP Run-time memory allocation

RAMDATA Public and Static data
RAMHEAP Run-time memory allocation

STRCON String constants
(FRAME) Procedure frame (contained in STACK)

10.3 The P-Code Stack
The P-Code Virtual Machine has three registers:

PC Program counter (2 bytes)
SP Stack Pointer (1 or 2 byte)
FP Frame Pointer (1 or 2 bytes)

SP and FP are 1 byte if RAM is 256 bytes (the Compact and Enhanced BasicCards), otherwise 2 bytes
(the Professional and MultiApplication BasicCards, and the Terminal).

The P-Code stack grows upwards; the SP register contains the address of the first free byte on the
stack. The stack contains four kinds of data:

• Command parameters, received from the I/O port (BasicCard only). These are located at the
bottom of the stack.

• Procedure parameters and return addresses. Before a procedure is called, its parameters are pushed
onto the P-Code stack. (If the procedure is a Function, space is reserved below the parameters for
the function return value.)

• FRAME data, consisting of Private data and compiler-generated temporary variables. Each
procedure has its own FRAME region, of a fixed size, that is allocated from the stack when the
procedure is called. The FP register points to the base of the FRAME region.

• Intermediate results of computations. The Virtual Machine has no data registers; all computation is
performed on the top of the P-Code stack.

The first P-Code instruction in a procedure is

ENTER frame-size

This instruction sets up the FRAME region as follows:

• Push FP
• Push SP + frame-size + size of SP (i.e. SP + frame-size + 1 or SP + frame-size + 2)
• FP = SP
• SP = SP + frame-size

The last instruction in every procedure is

LEAVE

10.4 Run-Time Memory Allocation

207

This undoes the effect of the ENTER instruction before returning to the caller:

• SP = FP – size of FP (i.e. FP – 1 or FP – 2)
• Pop FP
• Pop PC

10.4 Run-Time Memory Allocation
The Virtual Machine has two heaps for the run-time allocation of strings and arrays: RAMHEAP and
EEPHEAP. Each is composed of variable-length blocks, that are either allocated or free; adjacent free
blocks are concatenated as soon as they are created. In addition, an allocated block in EEPHEAP is
either permanent or temporary. Each block consists of a block header followed by a data area. The
block header contains the length of the data area, and one or two bits describing the block:

EEPHEAP block RAMHEAP block (small RAM) RAMHEAP block (large RAM)

F T Len (14 bits) F Len (7 bits) F Len (15 bits)

Data area (Len bytes) Data area (Len bytes) Data area (Len bytes)

F = 1 if the block is free, 0 if the block is allocated.

T = 1 if the block is temporary, 0 if the block is permanent. A temporary block is automatically freed
the next time the BasicCard is reset or the Terminal program is run.

Notes:

1. If F is 1, then T is not used as a temporary block flag. This means that, although allocated blocks
in EEPHEAP are limited to 16383 bytes, a free block (and thus the total size of the heap) may be
up to 32767 bytes long.

2. An Application in the MultiApplication BasicCard has a RAMHEAP region and an EEPHEAP
region, like other cards. These regions are contained in the Application File. In addition, the
operating system in the MultiApplication BasicCard has a global EEPROM heap, for Files and
Components. See 5.2.4 Memory Allocation for further information.

10.5 Data Types
The BasicCard Virtual Machine implements the following data types:

CHAR 1-byte unsigned integer
WORD 2-byte signed integer
LONG 4-byte signed integer
REAL 4-byte IEEE-format floating-point number
STRING See Strings below

These types correspond to the ZC-Basic data types Byte, Integer, Long, Single, and String
respectively. Arithmetic operations are provided for WORD, LONG, and REAL data; CHAR data
must be converted to WORD before performing arithmetic on it.

10.5.1 Strings
There are two types of string: variable-length and fixed-length.

• A variable-length string is a 2-byte pointer to a Pascal-type string, which consists of a length byte
followed by the string contents.

• A fixed-length string is a sequence of characters, whose length is known at compile time.

10. The ZC-Basic Virtual Machine

208208

Both types are restricted to 254 bytes in length; if an operation would result in a longer string, it
truncates the result.

String variables take various forms, depending on the storage type:

Eeprom A fixed-length Eeprom string variable is a sequence of characters in the
EEPDATA region. A variable-length Eeprom string variable is a 2-byte
pointer, in the EEPDATA region, to a Pascal-type string in the EEPHEAP
region.

Public, Static A fixed-length Public or Static string variable is a sequence of characters in
the RAMDATA region. A variable-length Public or Static string variable is
a 2-byte pointer, in the RAMDATA region, to a Pascal-type string, which
may be in RAMHEAP or EEPHEAP. Strings are allocated from
RAMHEAP if there is room, but if not they are allocated from EEPHEAP.
In this case they are marked as temporary, so that they can be deleted when
the BasicCard is reset or the Terminal program is restarted.

Private A fixed-length Private string variable is a sequence of characters in the
FRAME region. A variable-length Private string variable is a 2-byte
pointer, in the FRAME region, to a Pascal-type string, which may be in
RAMHEAP or EEPHEAP.

String parameters A String parameter takes up 3 bytes on the stack: a one-byte length
followed by a two-byte address. If length <= 254, the address points directly
to a fixed-length string. If length = 255, the address is a handle, and points
to a variable-length string variable. (This is the reason for the 254-byte
length restriction on all strings.)

10.6 P-Code Instructions
In this section, names in italics obey the following conventions:

• Initial characters s and u denote signed and unsigned values respectively.
• Initial character r, or second character c, w, l, denote REAL, CHAR, WORD, and LONG data

respectively.
• A is the address of an array descriptor.
• X$, Y$, Z$ are STRINGs.

10.6 P-Code Instructions

209

10.6.1 Miscellaneous Instructions

Name OpCode Param Description

NOP 00 No operation

ADDSP 01 scDelta SP += scDelta. If scDelta > 0, ‘pushed’ bytes are initialised to zero.

DUP 02 ucLen Push the top ucLen stack bytes

COMPL 03 Pop slY ; pop slX ; compare ; push for WORD comparison

RAND 04 Push a LONG random number

ERROR 05 ucError Generate a P-Code error condition

SYSTEM 06 ucSysCode Operating system call – see 10.7 The SYSTEM Instruction.

10.6.2 Data Conversion Instructions

Name OpCode Description

CVTCW 07 Pop ucX ; swY = ucX ; push swY

CVTWC 08 Pop swX ; ucY = swX ; push ucY

CVTWL 09 Pop swX ; slY = swX ; push slY

CVTLW 0A Pop slX ; swY = slX ; push swY

10. The ZC-Basic Virtual Machine

210210

10.6.3 Data Access Instructions (Push and Pop)

Name OpCode Param Description

PUCCB 0B ucConst Push constant CHAR ucConst

PUCWB 0C scConst Push constant scConst sign-extended to WORD

PUCWC 0D ucConst Push constant ucConst zero-extended to WORD

PUCWW 0E swConst Push constant WORD swConst

PURCB 0F ucAddr Push CHAR at address ucAddr

PURWB 10 ucAddr Push WORD at address ucAddr

PURLB 11 ucAddr Push LONG at address ucAddr

PURSB 12 ucAddr Push STRING at address ucAddr

PUECW 13 uwAddr Push CHAR at address uwAddr

PUEWW 14 uwAddr Push WORD at address uwAddr

PUELW 15 uwAddr Push LONG at address uwAddr

PUESW 16 uwAddr Push STRING at address uwAddr

PUFCB 17 scAddr Push CHAR at address FP + scAddr

PUFWB 18 scAddr Push WORD at address FP + scAddr

PUFLB 19 scAddr Push LONG at address FP + scAddr

PUFSB 1A scAddr Push STRING at address FP + scAddr

PUFAB 1B scAddr Push FP + scAddr as WORD

PUSAB 1C ucAddr Push SP – ucAddr as WORD

PUPSB 1D scAddr Push 3-byte STRING parameter at address FP + scAddr

PUINC 1E Pop uwAddr ; push CHAR at address uwAddr

PUINW 1F Pop uwAddr ; push WORD at address uwAddr

PUINL 20 Pop uwAddr ; push LONG at address uwAddr

PORCB 21 ucAddr Pop CHAR at address ucAddr

PORWB 22 ucAddr Pop WORD at address ucAddr

PORLB 23 ucAddr Pop LONG at address ucAddr

POECW 24 uwAddr Pop CHAR at address uwAddr

POEWW 25 uwAddr Pop WORD at address uwAddr

POELW 26 uwAddr Pop LONG at address uwAddr

POFCB 27 scAddr Pop CHAR at address FP + scAddr

POFWB 28 scAddr Pop WORD at address FP + scAddr

POFLB 29 scAddr Pop LONG at address FP + scAddr

POINC 2A Pop uwAddr ; pop CHAR at address uwAddr

POINW 2B Pop uwAddr ; pop WORD at address uwAddr

POINL 2C Pop uwAddr ; pop LONG at address uwAddr

10.6 P-Code Instructions

211

10.6.4 Integer Arithmetic Instructions

Name OpCode Description

ADDW 2D Pop swY ; pop swX ; push swX + swY

ADDL 2E Pop slY ; pop slX ; push slX + slY

SUBW 2F Pop swY ; pop swX ; push swX – swY

SUBL 30 Pop slY ; pop slX ; push slX – slY

MULW 31 Pop swY ; pop swX ; push swX * swY

MULL 32 Pop slY ; pop slX ; push slX * slY

DIVW 33 Pop swY ; pop swX ; push swX / swY

DIVL 34 Pop slY ; pop slX ; push slX / slY

MODW 35 Pop swY ; pop swX ; push swX Mod swY

MODL 36 Pop slY ; pop slX ; push slX Mod slY

ANDW 37 Pop uwY ; pop uwX ; push uwX And uwY

ANDL 38 Pop ulY ; pop ulX ; push ulX And ulY

ORW 39 Pop uwY ; pop uwX ; push uwX Or uwY

ORL 3A Pop ulY ; pop ulX ; push ulX Or ulY

XORW 3B Pop uwY ; pop uwX ; push uwX Xor uwY

XORL 3C Pop ulY ; pop ulX ; push ulX Xor ulY

NEGW 3D Pop swX ; push –swX

NEGL 3E Pop slX ; push –slX

ABSW 3F Pop swX ; push Abs(swX)

ABSL 40 Pop slX ; push Abs(slX)

INCW 41 Pop swX ; push swX + 1

INCL 42 Pop slX ; push slX + 1

NOTW 43 Pop uwX ; push Not(uwX)

NOTL 44 Pop ulX ; push Not(ulX)

10. The ZC-Basic Virtual Machine

212212

10.6.5 Program Control Instructions

(In the ENTER and LEAVE instructions, F denotes the size of the FP register, as defined in 10.3 The
P-Code Stack.)

Name OpCode Param Description

CALL 45 uwAddr Procedure call or GoSub: push PC+3 as WORD ; PC = uwAddr

ENTER 46 ucFrmSiz Push FP ; push SP + ucFrmSiz + F ; FP = SP ; SP = SP + ucFrmSiz

LEAVE 47 Return from procedure: SP = FP – F ; pop FP ; pop PC

RETURN 48 Return from GoSub: pop PC

JUMPB 49 scDisp PC = PC + scDisp + 2

JUMPW 4A uwAddr PC = uwAddr

JZRWB 4B scDisp Pop swX ; if swX = 0 then PC = PC + scDisp + 2

JNZWB 4C scDisp Pop swX ; if swX <> 0 then PC = PC + scDisp + 2

JEQWB 4D scDisp Pop swY ; pop swX ; if swX = swY then PC = PC + scDisp + 2

JNEWB 4E scDisp Pop swY ; pop swX ; if swX <> swY then PC = PC + scDisp + 2

JLEWB 4F scDisp Pop swY ; pop swX ; if swX <= swY then PC = PC + scDisp + 2

JGTWB 50 scDisp Pop swY ; pop swX ; if swX > swY then PC = PC + scDisp + 2

JGEWB 51 scDisp Pop swY ; pop swX ; if swX >= swY then PC = PC + scDisp + 2

JLTWB 52 scDisp Pop swY ; pop swX ; if swX < swY then PC = PC + scDisp + 2

LOOP 53 scDisp Pop swX ; if swX >= 0 then execute JLEWB else execute JGEWB

EXIT 54 Exit the Virtual Machine

10.6.6 Array Instructions

Name OpCode Param Description

ARRAY 55 Pop A ; pop subscript swIr for each dimension r, in reverse order ;
 push address of array element A (swI1, swI2, . . . , swIn)

CHKDIM 56 ucNdims Pop A ; push A ; if Dim(A) <> ucNdims then execute ERROR 0C

ALLOCA 57 Pop A ; pop bounds word uwBr for each dimension r, in reverse
 order; allocate data area of A and initialise all elements to 0

FREEA 58 Pop A ; if Dynamic then deallocate A, else set all elements of A to 0

FREEA$ 59 Pop string array A ; free all strings in A ; if Dynamic then deallocate A

BOUNDA 5A Pop swHi ; pop swLo ; push 400*swLo + (swHi – swLo) as WORD

LBOUND 5B Pop A ; pop ucDim ; push lower bound of subscript ucDim as WORD

UBOUND 5C Pop A ; pop ucDim ; push upper bound of subscript ucDim as WORD

10.6 P-Code Instructions

213

10.6.7 String Instructions

Name OpCode Description

COPY$ 5D Pop X$; pop Y$; X$ = Y$

FREE$ 5E Pop 2-byte handle to variable-length string X$; X$ = empty string

ADD$ 5F Pop X$; pop Z$; pop Y$; X$ = Y$ + Z$

MID$ 60 Pop swLen ; pop swStart ; pop X$; push Mid$(X$, swStart, swLen)

LEFT$ 61 Pop swLen ; pop X$; push Left$(X$, swLen)

RIGHT$ 62 Pop swLen ; pop X$; push Right$(X$, swLen)

LTRIM$ 63 Pop X$; push LTrim$(X$)

RTRIM$ 64 Pop X$; push RTrim$(X$)

UCASE$ 65 Pop X$; pop Y$; X$ = UCase$(Y$)

LCASE$ 66 Pop X$; pop Y$; X$ = LCase$(Y$)

STRING$ 67 Pop X$; pop ucChar ; pop swLen ; X$ = String$(swLen, ucChar)

STRL$ 68 Pop X$; pop slX ; X$ = Str$(slX)

HEX$ 69 Pop X$; pop slX ; X$ = Hex$(slX)

ASC$ 6A Pop X$; push Asc(X$) as CHAR

LEN$ 6B Pop X$; push Len(X$) as CHAR

COMP$ 6C Pop Y$; pop X$; compare ; push for WORD comparison

VALL$ 6D Pop X$; slVal = Val&(X$, ucLen) ; push slVal ; push ucLen

VALHL$ 6E Pop X$; slVal = ValH(X$, ucLen) ; push slVal ; push ucLen

10.6.8 Data Initialisation Instructions

Name OpCode Params Description

RDATA 6F ucAddr, ucLen, data Copy data (ucLen bytes) to address ucAddr

FDATA 70 scAddr, ucLen, data Copy data (ucLen bytes) to address FP + scAddr

10. The ZC-Basic Virtual Machine

214214

10.6.9 Floating-Point Instructions
Note: These instructions are not implemented in the Compact BasicCard.

Name OpCode Description

COMPR 71 Pop rY ; pop rX ; compare ; push for WORD comparison

CVTWR 72 Pop swX ; push swX as REAL

CVTRW 73 Pop rX ; push rX as WORD

CVTLR 74 Pop slX ; push slX as REAL

CVTRL 75 Pop rX ; push rX as LONG

ADDR 76 Pop rY ; pop rX ; push rX + rY

SUBR 77 Pop rY ; pop rX ; push rX – rY

MULR 78 Pop rY ; pop rX ; push rX * rY

DIVR 79 Pop rY ; pop rX ; push rX / rY

NEGR 7A Pop rX ; push –rX

ABSR 7B Pop rX ; push Abs(rX)

SQRTR 7C Pop rX ; push Sqrt(rX)

STRR$ 7D Pop X$; pop rX ; X$ = Str$(rX)

VALR$ 7E Pop X$; rVal = Val!(X$, ucLen) ; push rVal ; push ucLen

10.6.10 The XMIT Command Call Instruction
Note: This instruction is available only in a Terminal program.

Name OpCode Params Description

XMIT 7F ucType, ucLen Send command and process response

Before this instruction is executed, a command must be pushed onto the P-Code stack:

CLA INS P1 P2 Lc IDATA padded to ucLen bytes Le

Then the command is transmitted according to ucType, as follows:

ucType
0 Send Lc bytes in IDATA (no Le)

1 Send Lc bytes in IDATA, followed by Le

2 The top 3 bytes of the IDATA field contain a variable-length string parameter X$. Send
ucLen – 3 bytes in IDATA, followed by X$.

3 The same as ucType = 2, with Le appended to IDATA.

4 The top 3 bytes of the IDATA field contain a variable-length string parameter X$. Send up
to Lc bytes of (ucLen – 3 bytes followed by X$).

5 The same as ucType = 4, with Le appended to IDATA.

7 The same as ucType = 3, but X$ was passed ByVal.

9 The same as ucType = 5, but X$ was passed ByVal.

10.7 The SYSTEM Instruction

215

10.6.11 Abbreviated Instructions
Instructions from 80 to FF are single-byte abbreviations of 2-byte PUFxB / POFxB instructions. For
example, PUFLF1 (instruction A6) is an abbreviation of PUFLB F1.

Name OpCode Description

PUFWED – PUFWFC 80-8F Push WORD at address FP – (93 – OpCode)

PUFW00 – PUFW0F 90-9F Push WORD at address FP + (OpCode – 90)

PUFLEB – PUFLFA A0-AF Push LONG at address FP – (B5 – OpCode)

PUFL00 – PUFL0F B0-BF Push LONG at address FP + (OpCode – B0)

POFWED – POFWFC C0-CF Pop WORD at address FP – (D3 – OpCode)

POFW00 – POFW0F D0-DF Pop WORD at address FP + (OpCode – D0)

POFLEB – POFLFA E0-EF Pop LONG at address FP – (F5 – OpCode)

POFL00 – POFL0F F0-FF Pop LONG at address FP + (OpCode – F0)

10.7 The SYSTEM Instruction
The SYSTEM P-Code instruction (OpCode 06) calls an operating system function, according to the
first parameter, SysCode.

10.7.1 SYSTEM Functions in the Compact BasicCard
The Compact BasicCard has just three SYSTEM functions:

OpCode SysCode Name

06 00 WTX Send a Waiting Time Extension request

06 01 CommandString Convert a command parameter to a variable-length string

06 02 ResponseString Convert a variable-length string to a response parameter

10.7.2 SYSTEM Functions in Later BasicCards
The Enhanced, Professional, and MultiApplication BasicCards have some or all of the following
SYSTEM functions with SysCode < 80:

OpCode SysCode Name

06 00 WTX Send a Waiting Time Extension request

06 03 EnableKey Enable or disable a cryptographic key or its error counter

06 40 Certificate Calculate a cryptographic certificate

06 41 DES DES block encryption primitives

06 4C EnableOvCheck Enable overflow checking (the default)

06 4D DisableOvCheck Disable overflow checking

06 55 Key Built-in Key() function

06 58 Shift Shift/rotate operator

In addition, these BasicCards support the FILE SYSTEM functions – see 10.7.4 FILE SYSTEM
Functions. Professional and MultiApplication BasicCards also support some subset of the System
Library procedures – see 10.7.5 System Library Procedures.

10. The ZC-Basic Virtual Machine

216216

10.7.3 SYSTEM Functions in the Terminal

OpCode SysCode Name

06 00 WTX Give the card more time

06 40 Certificate Calculate a cryptographic certificate

06 41 DES Des block encryption primitives

06 42 Cls Clear the screen

06 43 UpdateScreen Update the screen

06 44 InKey$ Check for keyboard input

06 45 CardReader Look for a card reader

06 46 CardInReader Check whether a card is in the reader

06 47 ResetCard Reset the card in the card reader

06 48 WriteEeprom Write EEPROM data back to the image file

06 49 KeyFile Load a key file

06 4A EnableEncrypt Enable auto-encryption (the default)

06 4B DisableEncrypt Disable auto-encryption

06 4C EnableOvCheck Enable overflow checking (the default)

06 4D DisableOvCheck Disable overflow checking

06 4E Time$ Date and time as e.g. “Wed Jun 20 15:50:35 1998”

06 4F ChDrive Change the current disk drive

06 50 CurDrive Retrieve the current disk drive

06 51 LongSeed Seed the random number generator with a LONG value

06 52 StringSeed Seed the random number generator with a STRING

06 53 OpenLogFile Start logging of I/O to file

06 54 CloseLogFile End logging of I/O to file

06 56 PcscCount Number of configured PC/SC card readers

06 57 PcscReaderName Name of a PC/SC card reader

06 58 Shift Shift/rotate operator

In addition, the Terminal supports the FILE SYSTEM functions listed in the next section.

10.7 The SYSTEM Instruction

217

10.7.4 FILE SYSTEM Functions
The file system functionality in the ZC-Basic interpreter is implemented through the SYSTEM P-Code
instruction. Such FILE SYSTEM commands all have 80 <= SysCode <= BF:

OpCode SysCode Name

06 80 MkDir Create a directory

06 81 RmDir Delete a directory

06 82 ChDir Change the current directory

06 83 CurDir Retrieve the current directory

06 84 DirCount Count the filenames that match a wild-card spec

06 85 DirFile Return the nth matching filename

06 86 EraseFile Delete a data file

06 87 RenameFile Rename or move a file or directory

06 88 OpenFile Open a file

06 89 OpenFreeFile Open a file after finding a free file slot for it

06 8A CloseFile Close a file

06 8B CloseAll Close all files

06 8C FreeFile Find a free file slot

06 8D FileLength Return the length of an open file

06 8E GetFilepos Return the read/write pointer of an open file

06 8F SetFilepos Set the read/write pointer of an open file

06 90 EOF Return True if at the end of an open file

06 91 Get Read from a binary file

06 92 GetPos Get after setting the read/write pointer

06 93 Put Write to a binary file

06 94 PutPos Put after setting the read/write pointer

06 95 StartInput Set the counter of matched input items to 0

06 96 EndInput Return the counter of matched input items

06 97 Read Read a specified number of bytes from a sequential file

06 98 ReadLong Read a formatted LONG value from a sequential file

06 99 ReadSingle Read a formatted SINGLE value from a sequential file

06 9A ReadString Read a formatted STRING from a sequential file

06 9B ReadBlock Read a formatted fixed-size block from a sequential file

06 9C ReadLine Read a line from a sequential file

06 9D WriteLong Write a formatted LONG value to a sequential file

06 9E WriteSingle Write a formatted SINGLE value to a sequential file

06 9F WriteString Write a formatted STRING to a sequential file

06 A0 PrintLong Write an ASCII LONG value to a sequential file

06 A1 PrintSingle Write an ASCII SINGLE value to a sequential file

06 A2 PrintString Write an ASCII STRING to a sequential file

10. The ZC-Basic Virtual Machine

218218

OpCode SysCode Name

06 A3 PrintSpaces Write a specified number of spaces to a sequential file

06 A4 PrintTab Advance to the next 14-character output field

06 A5 SetColumn Advance to a specified output column

06 A6 PrintNewLine Print a new-line character

06 A7 LockFile Set the access conditions on a file or directory

06 A8 GetLocks Retrieve the access conditions on a file or directory

06 A9 GetAttr Retrieve the attributes of a file or directory

06 AA SetAttr Set the attributes of a file or directory (Terminal only)

10.7.5 System Library Procedures
Values of SysCode between C0 and FF are reserved for System Library procedures – see 3.13.2
System Library Procedures. For details of which codes are assigned to which procedures, see the
individual Library.DEF files supplied with ZeitControl’s development software.

219

11. Output File Formats
This chapter describes the formats of the various output files generated by the ZC-Basic compiler:

• Image file: program and data in binary format, for use by ZCMSIM and BCLOAD programs.
• Debug file: symbolic debugging information, for the ZCMDTERM and ZCMDCARD

debuggers.
• Application file: selectable Application file in the MultiApplication BasicCard
• List file: source program, compiled P-Code, and data in human-readable text format.
• Map file: the addresses of all symbols in the program, ordered by name and by location.

Note: Throughout this chapter, bold numbers are hexadecimal.

11.1 ZeitControl Image File Format
Debug and Image files consist of Sections, each of which starts with a 4-byte ASCII name, followed by
a 4-byte section length. In an Image file, Sections are guaranteed to occur in the following order:

For a BasicCard program:

‘ZCIF’ Signature Section – “ZeitControl Image File”
‘VERS’ Version Section – File format version
‘VMTP’ Virtual Machine Type Section – target machine
‘CONF’ Configuration File Section (Professional BasicCard only)
‘EEPR’ EEPROM Image Section – EEPSYS, CMDTAB, PCODE, STRCON, KEYTAB,

EEPDATA, and EEPHEAP regions (absent for MultiApplication BasicCard)
‘LOAD’ Program Load Section, containing the commands to download to the BasicCard
‘CERT’ Code Certification Section (certain Enhanced BasicCard versions)

For a Terminal program:

‘ZCIF’ Signature Section – “ZeitControl Image File”
‘VERS’ Version Section – File format version
‘VMTP’ Virtual Machine Type Section – target machine
‘CODE’ P-Code Section – Contents of PCODE region
‘DATA’ Data Section – RAMSYS, STRCON, RAMDATA, and RAMHEAP regions
‘EEPR’ EEPROM Image Section – EEPDATA and EEPHEAP regions

Numerical 2-byte and 4-byte fields are stored lsb to msb, Intel-style (or Little-Endian). This is in
contrast to the Virtual Machine, which is Big-Endian.

Some sections contain string tables. A string table consists of consecutive null-terminated strings.
Whenever a name occurs in a Section field, it is to be interpreted as an offset into the string table of the
current Section.

11.1.1 Signature Section
Length

4 ‘ZCIF’ (“ZeitControl Image File”)

4 Total length of all remaining sections (= file length – 8)

11.1.2 Version Section
Length

4 ‘VERS’

4 Section length = 04

1 Major version of software that created this file

11. Output File Formats

220220

1 Minor version of software that created this file

1 Major version of oldest software compatible with this file

1 Minor version of oldest software compatible with this file

11.1.3 Virtual Machine Type Section
Length

4 ‘VMTP’

4 Section length len

len MachineType

If len = 2, the first byte of MachineType is as follows:

00 Terminal
01 Compact BasicCard
02 Enhanced BasicCard
06 MultiApplication BasicCard

and the second byte is the Machine Sub-type (00 for Terminal or MultiApplication BasicCard, 01 for
Compact BasicCard, various values for Enhanced BasicCard).

If len > 2, the Image File contains a Professional BasicCard program, and MachineType is an ASCII
string containing the version ID of the card.

11.1.4 Configuration File Section (Professional BasicCard only)
Length

4 ‘CONF’

4 Section length len

len Full path name of .ZCF BasicCard Configuration File

11.1.5 P-Code Section (Terminal only)
Length

4 ‘CODE’

4 Section length len

2 Program entry point

len-2 P-Code. The P-Code in the Terminal starts at address 0000.

11.1.6 Data Section (Terminal only)
Length

4 ‘DATA’

4 Section length

2 Start address of RAM data

2 Length of RAM data

2 Number of records n

2 Start address of record 0

2 Length len0 of record 0

len0 Contents of record 0

11.1 ZeitControl Image File Format

221

. . .

2 Start address of record n – 1

2 Length len n–1 of record n – 1

len n–1 Contents of record n – 1

All RAM bytes not contained in a record must be initialised to 00.

The Data Section contains the RAMSYS, STRCON, RAMDATA, and RAMHEAP regions.

11.1.7 EEPROM Image Section
Length

4 ‘EEPR’

4 Section length

2 Start address of EEPROM data

2 Length of EEPROM data

2 Number of records n

2 Start address of record 0

2 Length len0 of record 0

len0 Contents of record 0

. . .

2 Start address of record n – 1

2 Length len n–1 of record n – 1

len n–1 Contents of record n – 1

All EEPROM bytes not contained in a record must be initialised to FF.

In the Terminal, the EEPROM Image Section contains just the EEPDATA and EEPHEAP regions. In
the BasicCard, it contains the EEPSYS, CMDTAB, PCODE, STRCON, KEYTAB, EEPDATA, and
EEPHEAP regions.

11.1.8 Program Load Section (Single-Application BasicCards)
Length

4 ‘LOAD’

4 Section length

1 State of BasicCard after download (from #State directive or –S parameter)

2 Number nWE of WRITE EEPROM commands

2 Number nCRC of EEPROM CRC commands

2 Address of WRITE EEPROM command 0

1 Length len0 of WRITE EEPROM command 0

len0 Contents of WRITE EEPROM command 0

. . .

2 Address of WRITE EEPROM command nWE – 1

1 Length len n–1 of WRITE EEPROM command nWE – 1

len n–1 Contents of WRITE EEPROM command nWE – 1

11. Output File Formats

222222

2 Address of EEPROM CRC command 0

2 Length of EEPROM CRC command 0

2 CRC of EEPROM CRC command 0

. . .

2 Address of EEPROM CRC command nCRC – 1

2 Length of EEPROM CRC command nCRC – 1

2 CRC of EEPROM CRC command nCRC – 1

11.1.9 Application Load Section (MultiApplication BasicCard)
Length

4 ‘LOAD’

4 Section length

1 State of BasicCard after download (from #State directive or –S parameter)

1 Loader Action code

1 Loader Action subcode

Loader Action data

. . .

1 Loader Action code

1 Loader Action subcode

Loader Action data

A Debug File contains source file information between the Loader Action subcode and the Loader
Action data. It consists of File number (2 bytes), Line number (2 bytes), and File position (4 bytes).

A Loader Action code other than 20 is an instruction to the Application Loader. In this case, the Loader
Action data consists of the number of parameters (1 byte), followed by a Parameter Field for each
parameter. A Parameter Field consists of ParamType (1 byte), followed by the value of the Parameter,
as follows:

ParamType Meaning Format
00 Byte 1 byte
01 Integer 2 bytes, lsb first
02 Long 4 bytes, lsb first
04 String len (1 byte) followed by val (len bytes)
10 ctFile 4-byte Reference number of a Component of type File
20 ctAcr 4-byte Reference number of a Component of type ACR
30 ctPrivilege 4-byte Reference number of a Component of type Privilege
40 ctFlag 4-byte Reference number of a Component of type Flag
70 ctKey 4-byte Reference number of a Component of type Key

The following table gives the parameter types of each Application Loader instruction:

Code Subcode
10 82 Push current directory and change directory (Directory As String)

10 83 Pop current directory (no parameters)

10 49 LCReadKeyFile (KeyFile As String)

C0 10 LCStartEncryption (Key As ctKey, Algorithm As Byte)

11.1 ZeitControl Image File Format

223

C0 12 LCEndEncryption (no parameters)

C0 42 LCExternalAuthenticate (Key As ctKey, Algorithm As Byte)

C0 44 LCInternalAuthenticate (Key As ctKey, Algorithm As Byte)

C0 46 LCVerify (Key As ctKey)

C0 92 LCGrantPrivilege (Privilege As ctPrivilege, File As ctFile)

C0 94 LCAuthenticateFile (Key As ctKey, Algorithm As Byte, File As ctFile,
Signature As String)

C0 98 LCLoadSequence (Phase As Byte)

C0 9A LCStartSecureTransport (Key As ctKey, Algorithm As Byte, Nonce As String)

C0 9B LCEndSecureTransport (no parameters)

C0 9C LCCheckSerialNumber (SerialNumber As String)

A Loader Action code of 20 is a Component Action:

Code Subcode
20 10 File Action

20 20 ACR Action

20 30 Privilege Action

20 40 Flag Action

20 50 Directory Action

20 70 Key Action

Component Action data begins with the following fields, common to all Component types:

Ref Component Reference (4 bytes)
Create Create Option (1 byte): 0/1/2/3 = Always/Once/Update/Never
Name len (1 byte), name (len bytes): absent (because known) if top bit is set in Create
Lock Component Reference number of ACR (4 bytes)
Spec Bit mask of attributes specified in the source code (1 byte)

Bit 0 of Spec (here denoted by Spec.0) is set if the Lock field was specified in the corresponding
Component Definition. The other bits of Spec, and the remainder of the Component Action data,
depend on the Component type. See 5.8 Component Details for background information:

Subcode 10: File Action

Spec.1 BlockLen (2 bytes)
FileLength (2 bytes)

Spec.2 Contents of file (FileLength bytes)

The first two fields are always present; the file contents are only present if Spec.2 is set.

Subcode 20: ACR Action

Spec.1 ACRType (1 byte)
ACRData

These fields are described in 5.8.2 ACRs. If Spec.1 is not set, then neither field is present.

Subcode 30: Privilege Action

A Privilege Action contains no further Component Action data.

Subcode 40: Flag Action

Spec.1 Attributes (1 byte)

This field is always present.

11. Output File Formats

224224

Subcode 50: Directory Action

A Directory Action contains no further Component Action data.

Subcode 70: Key Action

Spec.1 UsageMask (2 bytes)
Spec.2 AlgorithmMask (2 bytes)
Spec.3 ErrorCounter (1 byte)
Spec.4 ECResetValue (1 byte)
Spec.5 Data

The first four fields are always present. If Spec.5 is set, then the Data field is also present; it takes the
form of a Parameter Field of type BinaryData, as follows:

ParamType Meaning Format
80 BinaryData 1-byte BinaryData sub-type code, followed by parameters:

Subtype
81 bdString: len (1 byte), val (len bytes)
82 bdLCIndexedKey: KeyIndex (1 byte)
83 bdLCSerialNumber: no parameters
84 bdLCBuildKey: Key (ctKey parameter)

Len (Byte parameter)
Seed (BinaryData parameter)

85 bdLCKey: Key (ctKey parameter)

11.1.10 Code Certification Section
This Section is only required for Enhanced BasicCards ZC3.1, ZC3.2, and ZC3.31.

Length
4 ‘CERT’

4 Section length len

2 Start address of Certified Code

len–2 Code Certificate, to be sent in the SET STATE command

11.2 ZeitControl Debug File Format
A debug file has the same format as an image file, with additional sections containing debug
information. The Signature Section has a different name:

‘ZCDF’ Signature Section – “ZeitControl Debug File”

The debug information sections occur immediately after the ‘CONF’ Configuration File Section if
present, otherwise the ‘VMTP’ Virtual Machine Type Section:

‘OPTS’ Compiler Options Section – Options with which the source file was compiled
‘FILE’ Files Section – Names of all source files
‘TYPE’ Types Section – Descriptions of all data types used in the program
‘SYMB’ Symbols Sections – Labels and variables, one Section for each scope
‘LINE’ Line Numbers Section – Source line number information
‘FIXU’ Fixups Section – Cross-references

11.2.1 Signature Section
Length

4 ‘ZCDF’ (“ZeitControl Debug File”)

4 Total length of all remaining sections (= file length – 8)

11.2 ZeitControl Debug File Format

225

11.2.2 Compiler Options Section
This section contains the compiler options with which the source file was compiled.

Length
4 ‘OPTS’

4 Section length

1 –Sstate parameter: State of the BasicCard

4 –Sstack parameter: Stack size requested

4 –Hheap parameter: Heap size requested

4 Length lenI of –Iinclude-path parameter

lenI –Iinclude-path parameter: search paths for included files

4 Length lenD of –Dconstants parameter

lenD –Dconstants parameter: command-line constant definitions

4 Length lenN of –Nserial-number parameter

lenN –Nserial-number parameter: serial number of MultiApplication BasicCard

All these fields are present, even if they are not allowed for the given Machine Type.

11.2.3 Files Section
This section contains the names and timestamps of all the source files in the program:

Length
4 ‘FILE’

4 Section length

2 String table length lenST

lenST String table

2 Number of files n

2 Name of file 0

4 Number of lines in file 0

2 Length of longest line in file 0

4 Timestamp of file 0

. . .

2 Name of file n – 1

4 Number of lines in file n – 1

2 Length of longest line in file n – 1

4 Timestamp of file n – 1

11.2.4 Types Section
This section contains definitions of every data type that occurs in the program.

Length
4 ‘TYPE’

4 Section length

11. Output File Formats

226226

2 String table length lenST

lenST String table

2 Number of type entries n

7 Type 0

. . .

7 Type n – 1

Type format (shaded bytes are zero):

Byte 0

Integer 1

Long 2

Single 3

String 4

String*n 5 n

Array 6 ElementType nDims

UserType 7 TypeName nMembers

Member 8 MemberName MemberType Offset

ElementType, MemberType Indices of types in the Types section
TypeName, MemberName Offsets in the string table
nDims Number of dimensions of the array
nMembers Number of members in the user-defined type
Offset Offset of the member in its user-defined type UserType

A UserType entry is immediately followed by nMembers type entries of type Member.

11.2.5 Symbols Sections
The first Symbols Section contains global symbols. Each subsequent Symbols Section contains the
local symbols for a single procedure. Symbols are sorted by name (according to the ‘C’ library function
stricmp). Symbols beginning with ‘$’ are compiler-generated names.

Length
4 ‘SYMB’

4 Section length

2 Procedure start address (0000 for the global Symbols Section)

2 Procedure end address (0000 for the global Symbols Section)

2 String table length lenST

lenST String table

2 Number of symbols n

8 Symbol 0

. . .

8 Symbol n – 1

11.2 ZeitControl Debug File Format

227

Symbol format (shaded bytes are zero):

Const Long 0 SymbolName 4-byte integer

Const Single 1 SymbolName 4-byte floating-point number

Const String 2 SymbolName String Len

Label 3 SymbolName Address

Variable 4 SymbolName Address Type Storage

Library Proc 5 SymbolName Code Subcode

Command 6 SymbolName Address CLA INS

SymbolName, String 2-byte offsets in the string table
Type Index in the Types section
Storage 0 = 2-byte absolute

1 = 1-byte absolute
2 = 1-byte signed, FP-relative (procedure parameters, Private data)
3 = indirect 1-byte signed, FP-relative (String and array parameters)

Code, Subcode SYSTEM code and subcode

11.2.6 Line Numbers Section
Line-number entries are sorted in increasing code address order.

Length
4 ‘LINE’

4 Section length

2 Number of line-number entries n

10 Line-number entry 0

. . .

10 Line-number entry n – 1

Line-number entry format:

Code address (2 bytes) File number (2 bytes) Line number (2 bytes) File position (4 bytes)

11.2.7 Fixups Section
This Section contains two tables: Labels and Operands. Entries in the Labels table give the label(s) at a
given address. Entries in the Operands table give the operand of a P-Code instruction as a symbol
(Label or Variable).

Length
4 ‘FIXU’

4 Section length

2 Number of entries in Labels table nLabs

6 Label entry 0

. . .

6 Label entry nLabs – 1

2 Number of entries in Operands table nOps

11. Output File Formats

228228

6 Operand entry 0

. . .

6 Operand entry nOps – 1

Label entries and Operand entries have the same format:

Code address (2 bytes) Symbols Section (2 bytes) Index of symbol in Symbols Section (2 bytes)

11.3 Application File Format
An Application File in the MultiApplication BasicCard has the following format:

Length
4 ‘ZCAF’ “ZeitControl Application File”

2 Version Major/Minor Version Number (currently 10.1)

2 CompatibilityMask For future expansion – currently &H0001

2 RamAddressOffset Virtual RAM starts here

2 AppFileAddressOffset Virtual EEPROM starts here

2 StackSize P-Code Stack size required by Application

2 UserRamSize Size of User RAM Data + User RAM Heap

2 ApplIDPtr Application ID string

2 RamInitCodePtr Address of compiler-generated RAM initialisation code

2 InitCodePtr Address of user’s Application initialisation code

2 CommandTablePtr Table of user-defined commands

2 AppFileData Start of Application’s Eeprom Data

2 AppFileHeap Start of Application’s Eeprom Heap

2 AppFileHeapEnd End of Application’s Eeprom Heap

2 ErrorHandler User-defined ErrorHandler procedure

2 DefaultHandler User-defined Command Else command

2 ClaInsFilter User-defined ClaInsFilter procedure

1 OptionMask #Pragma options

Application Code and Data

11.4 List File Format

229

11.4 List File Format
The format of the list file is illustrated by means of a small example program:

Declare ApplicationID = ″Small Example Program″
Eeprom MonthLength(1 To 12) = 1,28,31,30,31,30,31,31,30,31,30,31
Const InvalidMonth = &H6F01
Command &H80 &H00 GetMonthLength (N)

If N < 1 Or N > 12 Then
SW1SW2 = InvalidMonth

Else
N = MonthLength (N)

End If
End Command

This program was compiled for the Compact BasicCard version ZC1.1, with list file and map file
requested:

ZCBASIC MONTHLEN –CC1 –OL -OM

The list file, MONTHLEN.LST:

� File: MONTHLEN.BAS
� 1 Declare ApplicationID = ″Small Example Program″

� $ApplicationID:
� EEPDATA 8082: 15 53 6D 61 6C 6C 20 45 78 61 6D 70 6C 65 20 50

EEPDATA 8092: 72 6F 67 72 61 6D
2 Eeprom MonthLength(1 To 12) = 1,28,31,30,31,30,31,31,30,31,30,31

� MonthLength:
EEPDATA 8098: 80 A0 02 01 04 0B 00 18

MonthLength Data:
EEPDATA 80A0: 00 01 00 1C 00 1F 00 1E 00 1F 00 1E 00 1F 00 1F
EEPDATA 80B0: 00 1E 00 1F 00 1E 00 1F

Const80008000:
EEPDATA 80B8: 80 00 80 00

3 Const InvalidMonth = &H6F01
4 Command &H80 &H00 GetMonthLength (N)

GetMonthLength:
� PCODE 	 804E:
46 00 � ENTER 00

CMDTAB 8043: 02 80 00 02 80 4E C0 18 07 80 77
5 If N < 1 Or N > 12 Then

PCODE 8050: 8F PUFWFC (N) �

PCODE 8051: 0C 01 PUCWB 01
PCODE 8053: 15 80B8 PUELW Const80008000
PCODE 8056: 3C XORL
PCODE 8057: 52 09 JLTWB $If001
PCODE 8059: 8F PUFWFC (N)
PCODE 805A: 0C 0C PUCWB 0C
PCODE 805C: 15 80B8 PUELW Const80008000
PCODE 805F: 3C XORL
PCODE 8060: 4F 06 JLEWB $Else001

6 SW1SW2 = InvalidMonth
$If001:

PCODE 8062: 0E 6F01 PUCWW 6F01
PCODE 8065: 22 45 PORWB SW1SW2
PCODE 8067: 54 EXIT

7 Else
8 N = MonthLength (N)

$Else001:
PCODE 8068: 8F PUFWFC (N)
PCODE 8069: 0E 8098 PUCWW MonthLength

11. Output File Formats

230230

PCODE 806C: 55 ARRAY
PCODE 806D: 1F PUINW
PCODE 806E: CF POFWFC (N)

9 End If
10 End Command

PCODE 806F: 54 EXIT
$InitCode:

PCODE 8070: 46 00 ENTER 00
PCODE 8072: 6F 80 01 RDATA 80 01

FF FF
PCODE 8076: 47 LEAVE

� Input filename
� Source code, with line number
� Compiler-generated label (begins with ‘$’)
� Eeprom data (EEPDATA is the name of the region)
� User-generated label (no initial ‘$’)
� P-Code (PCODE is the name of the region)
	 Address of P-Code instruction

 P-Code instruction and operands, in hexadecimal
� P-Code instruction and operands, in text
� Implicit operand of abbreviated P-Code instruction, in parentheses

11.5 Map File Format

231

11.5 Map File Format
The map file MONTHLEN.MAP from the example program in the previous section, 11.4 List File
Format:

� Input file: MONTHLEN.BAS

� ===== RAM regions =====

Name Start End Length
---- ----- --- ------
RAMSYS 00 4B 4C
STACK 4C 7F 34
RAMDATA 00
RAMHEAP 80 FF 80

� ===== EEPROM regions =====

Name Start End Length
---- ----- --- ------
EEPSYS 8020 8042 0023
CMDTAB 8043 804D 000B
PCODE 804E 8081 0034
STRCON 0000
KEYTAB 0000
EEPDATA 8082 80BB 003A
EEPHEAP 80BC 83FF 0344

� ===== Symbols by name =====

Name Scope Address Type
---- ----- ------- ----
Algorithm Global 23 PUBLIC BYTE
CardMajorVersion Global CONST=0001
CardMinorVersion Global CONST=0001
CLA Global 47 PUBLIC BYTE
CompactBasicCard Global CONST=0001
Const80008000 GetMonthLength 80B8 EEPROM LONG
False Global CONST=0000
GetMonthLength Global 804E COMMAND &H80 &H00
INS Global 48 PUBLIC BYTE
InvalidMonth Global CONST=6F01
KeyNumber Global 40 PUBLIC BYTE
Lc Global 4B PUBLIC BYTE
Le Global 44 PUBLIC BYTE
MonthLength Global 8098 EEPROM INTEGER ARRAY
MonthLength Data Global 80A0 ARRAY DATA
N GetMonthLength FC PARAM INTEGER
P1 Global 49 PUBLIC BYTE
P1P2 Global 49 PUBLIC INTEGER
P2 Global 4A PUBLIC BYTE
PCodeError Global 41 PUBLIC BYTE
ResponseLength Global 43 PUBLIC BYTE
SW1 Global 45 PUBLIC BYTE
SW1SW2 Global 45 PUBLIC INTEGER
SW2 Global 46 PUBLIC BYTE
True Global CONST=FFFFFFFF

� ===== Symbols by location =====

11. Output File Formats

232232

RAM system data:

Name Scope Address Type
---- ----- ------- ----
Algorithm Global 23 PUBLIC BYTE
KeyNumber Global 40 PUBLIC BYTE
PCodeError Global 41 PUBLIC BYTE
ResponseLength Global 43 PUBLIC BYTE
Le Global 44 PUBLIC BYTE
SW1 Global 45 PUBLIC BYTE
SW1SW2 Global 45 PUBLIC INTEGER
SW2 Global 46 PUBLIC BYTE
CLA Global 47 PUBLIC BYTE
INS Global 48 PUBLIC BYTE
P1 Global 49 PUBLIC BYTE
P1P2 Global 49 PUBLIC INTEGER
P2 Global 4A PUBLIC BYTE
Lc Global 4B PUBLIC BYTE

EEPROM user data:

Name Scope Address Type
---- ----- ------- ----
MonthLength Global 8098 EEPROM INTEGER ARRAY
MonthLength Data Global 80A0 ARRAY DATA
Const80008000 GetMonthLength 80B8 EEPROM LONG

� User code:

Name Scope Address Type
---- ----- ------- ----
GetMonthLength Global 804E COMMAND &H80 &H00
Initialisation Code Global 8070 SUB

	 Local variables:

Name Scope Address Type
---- ----- ------- ----
N GetMonthLength FC PARAM INTEGER

� Input filename.
� RAM regions: The addresses and lengths of the regions in RAM.
� EEPROM regions: The addresses and lengths of the regions in EEPROM.
� Symbols by name: All the symbols in alphabetical order.
� Symbols by location: All the symbols, ordered according to location and address.
� User code: The addresses of all the procedures and labels in the source program.
	 Local variables: The signed FP-relative addresses of parameters and Private data.

233

Index
A

Abs..39
Access Conditions...66
Access Control Rule71
Access Types ..72
ACos Mathematical Function124
ACR ..71
ACR Definition...76
Advanced Encryption Standard 111, 188
AES Algorithm ...188
AES Function ...111
AES Library..111
Algorithm... 47, 51
Allow9XXX..20
Answer To Reset................................... 45, 130
Append mode ...63
Application File Definition75
Application File Format..............................228
Application Files...72
Application ID ..46
Application Loader 74, 102
Application Loader Definition74
Applications ..72
Array Descriptor Format...............................53
Array Functions ..39
Array Parameters ..38
Arrays ...23
As type ..24
Asc ..39
ASin Mathematical Function124
ASSIGN NAD Command158
Assignment Statements.................................29
At address...24
ATan Mathematical Function.....................124
ATan2 Mathematical Function...................124
ATR .. 45, 131
ATR Declaration...45
ATR File ...73
Attributes ..61
AUTHENTICATE FILE Command175
AuthenticateFile Function.........................119
Automatic Encryption...................................50

B

BasicCard..8
BasicCard Program Layout.............................9
BasicCard Virtual Machine.........................205
BasicCard-Specific Features45
BCKEYS.EXE..106
BCLOAD.EXE ...104
Beep Subroutine ...126
BgCol..51
Binary Files... 65, 66
Binary mode...63

Bitwise Operators..28
Block Waiting Time131
Built-in Commands142
Built-in Functions..39
BWT..131
Byte data type..23

C

Call..37
Card ID File...74
Card Loader...104
Card State ..21
CardInReader..49
CardReader..49
CardSerialNumber Function.....................127
Case...32
Catch Undefined Commands.........................20
Ceil Mathematical Function........................123
Certificate...40, 44
Certificate Generation44, 188
ChDir ..59
ChDrive ..61
Chr$..39
CLA ..34, 36, 47
ClaInsFilter ..34
Class byte ..34, 36, 47
CLEAR EEPROM Command...................147
Close File...64
Close Log File ..50
Cls ...48
Command Calls ...37
Command Declarations36
Command Definition.....................................33
Command-Line Software99
Command-response protocol...........................7
COMMANDS.DEF.....................................179
Communications....................................49, 130
Compact BasicCard.......................................12
Comparison Operators...................................27
Component Details ..85
COMPONENT Library..............................118
COMPONENT NAME Command............173
Component Types..71
ComponentName Function........................119
Components...71
ComPort ...51
Computed GoTo/GoSub...............................33
Conditional Compilation20
Constant Definition19
Cos Mathematical Function124
CosH Mathematical Function124
CRC16 Function ...126
CRC32 Function ...126
Create Component Attribute74
CREATE COMPONENT Command166

ZeitControl BasicCard

234234

Create File...62
CreateComponent Subroutine...................118
CurDir..59
CurDrive ..62
Current Disk Drive.................................. 61, 62
CursorX ...51
CursorY ...51
Custom Lock...67

D

Data Declaration ...24
Data File Definition75
Data Storage..22
Data Types ..23
Data Types, P-Code207
Date...50
Debug File Format224
Debug File, Generating...............................100
Declare ApplicationID46
Declare Binary ATR46
Declare Key ...42
Declare Polynomials....................................42
DefByte...52
DefInt ...52
DefLng ...52
DefSng ..52
DefString..52
DefType Statement52
DELETE COMPONENT Command167
Delete File...62
DeleteComponent Subroutine118
DES Algorithm ...183
DES Encryption Primitives...........................43
Dim ...24
Dir... 60, 68
Directory Attributes61
Directory Commands58
Directory Definition................................ 68, 75
Directory Names ...55
Directory-Based File Systems.......................55
Disable Encryption................................ 46, 50
Disable Key ..43
Disable OverflowCheck52
Disk Drive... 61, 62
Do-Loop..32
Dynamic arrays ..24

E

EAX Algorithm ..191
EAX Library...120
EAXComputeCiphertext Subroutine........120
EAXComputePlaintext Subroutine...........120
EAXComputeTag Function.......................120
EAXInit Function.......................................120
EAXProvideHeader Subroutine................120
EAXProvideNonce Subroutine..................120
EC–161 Library..112
EC161DomainParams117
EC161GenerateKeyPair114
EC161HashAndSign115

EC161HashAndVerify115
EC161SessionKey116
EC161SetCurve ...113
EC161SetPrivateKey.................................114
EC161SharedSecret...................................115
EC161Sign..115
EC161Verify ..115
EC–167 Library ..112
EC167DomainParams...............................117
EC167GenerateKeyPair114
EC167HashAndSign..................................115
EC167HashAndVerify115
EC167MakePublicKey114
EC167SessionKey116
EC167SetCurve ...113
EC167SetPrivateKey.................................114
EC167SharedSecret...................................115
EC167Sign..115
EC167Verify ..115
EC–211 Library ..112
EC211DomainParams...............................117
EC211GenerateKeyPair114
EC211HashAndSign..................................115
EC211HashAndVerify115
EC211MakePublicKey114
EC211SessionKey116
EC211SetCurve ...113
EC211SetPrivateKey.................................114
EC211SharedSecret...................................115
EC211Sign..115
EC211Verify ..115
ECDomainParams File................................74
ECHO Command157
EEPROM CRC Command150
Eeprom data ...22
EEPROM SIZE Command........................146
Elliptic Curve Libraries112
Enable Encryption.................................46, 50
Enable Key ...43
Enable OverflowCheck52
Encryption ...41
Encryption Algorithms183
Encryption Functions40
END ENCRYPTION Command156
Enhanced BasicCard......................................12
EOF...68
Error Counter...43
Error Directive...22
Error File, Generating..................................100
Error Handling...45
Executable Files ..14
Execute Subroutine.....................................125
Exit..29
Exp Mathematical Function........................124
Explicit ...53
Expressions..26
ExtAuthKeyCID48, 161
EXTERNAL AUTHENTICATE Command

...161

Index

235

F

fa... File Attributes ..61
FastEepromWrites Subroutine127
fe... File System Errors57
FgCol ..51
File ..69
File Attributes ...61
File Authentication..82
File Definition...69
File Definition Sections11
FILE IO Command....................................159
File Names ..55
File System Commands57
File types...89
FileError .. 48, 51
FILEIO.DEF ...69
Files and Directories55
FIND COMPONENT Command..............172
FindComponent Function119
Fixed arrays...24
Flag ...71
Flag Definition..77
Floor Mathematical Function123
Folders ..55
For-Loop ..31
FreeFile ..68
Function Calls ...37
Function Definition.......................................33

G

GET APPLICATION ID Command152
GET CHALLENGE Command160
GET FREE MEMORY Command...........164
Get Lock...67
GET STATE Command145
GetAttr...61
GetDateTime Subroutine125
GetFreeMemory Subroutine127
GoSub...30
GoTo...30
GRANT PRIVILEGE Command174
GrantPrivilege Subroutine.........................119

H

Heap Size ..22
Hex$...39
Hexadecimal Constants.................................17
Hypot Mathematical Function....................124

I

I/O Logging...50
I-block (T=1 protocol)136
IDEA Library ...123
IdeaDecrypt ...123
IdeaEncrypt ...123
If-Then-Else ...30
Image File Format.......................................219
Image File, Generating................................100
Implicit ...53
Initialisation Code...9

InKey$..48
Input ...49, 65
Input mode ...62
INS ..34, 36, 47
Installation of Support Software....................89
Instruction byte..................................34, 36, 47
Integer data type ...23
INTERNAL AUTHENTICATE Command

...162

K

Key Configuration...42
Key Declaration...42
Key Definition...77
Key Error Counter ...43
Key Generator ...105
Key Loader..106
Keyboard Input..48
KEYGEN.EXE..105
KeyNumber....................................48, 51, 154
Kill ..62

L

Labels ..30
LBound...39
Lc ..47
LCase$..39
LCAuthenticateFile80
LCCheckSerialNumber80
LCEC167SetCurve......................................79
LCEndEncryption79
LCEndSecureTransport79
LCExternalAuthenticate.............................79
LCGrantPrivilege..79
LCInternalAuthenticate79
LCReadKeyFile ...79
LCStartEncryption79
LCStartSecureTransport............................79
LCVerify ..79
Le ..47
Left$..39
Len (of data)..39
Len (of file)...68
LibError...48, 107
Libraries ..107
Library Inclusion ...19
LIBVER.EXE..107
Line Input...49, 65
List File Format...229
List File, Generating....................................100
Listing Directives ..21
LOAD SEQUENCE Command.................177
LOAD state ...142
Loader Commands ..78
LoadSequence Subroutine..........................119
Lock ..67
Lock Component Attribute74
Lock File ...66
Log10 Mathematical Function124
LogE Mathematical Function......................124

ZeitControl BasicCard

236236

Long data type ..23
LTrim$...40

M

Map File Format ...231
Map File, Generating100
MATH Library ...123
Memory Allocation.......................................54
Message Decryption Functions........... 185, 189
Message Directive...22
Message Encryption Functions 184, 188
Mid$...40
MISC Library ...124
MkDir...58
MultiApplication BasicCard 13, 71

N

Name ..59
NEW state...142
nParams ...51
Numerical Expressions27
Numerical Functions.....................................39
Numerical Operators.....................................27

O

Octal Constants ...17
OMAC Algorithm193
OMAC Function...121
OMAC Library...121
OMACAppend Subroutine........................121
OMACEnd Function..................................121
OMACInit Function121
OMACStart Subroutine.............................121
Open File...62
Open File Slots..21
Open Log File ..50
Option Base ...52
Option Explicit ..53
Option Implicit ..53
Output File Formats219
Output mode ..62
Overflow Checking.......................................52

P

P1 ..47
P1P2 ...48
P2 ..47
Param$...52
Parameter Passing ...38
Parameter Size Limits53
Path Names ...55
pc... P-Code Errors140
PC/SC Functions...49
P-Code Instructions.....................................208
P-Code Interpreter.......................................102
P-Code Stack...206
PCodeError ... 48, 51
PcscCount ..49
PcscReader ..50
Permanent Data....................................... 11, 15

PERS state ..142
PKCS...108
Plug-In Libraries ...107
Polynomial Declaration.................................42
Pow Mathematical Function........................124
Power Management.....................................128
Pragma Directive...20
Pre-Defined Commands142
Pre-Defined Constants...................................22
Pre-Defined Files...57
Pre-Defined Variables47, 51
Pre-Processor Directives19
Print ..48, 64
Private data...23
Privilege ..71
Privilege Definition77
Procedure Calls ...37
Procedure Declaration35
Procedure Definition33
Procedure Definitions....................................10
Procedure Parameters38
Processor Cards ...6
Professional BasicCard..................................12
Program Control ..29
Programmable Processor Cards.......................7
Protocol Selection ...20
Public data ..23
Put...65

R

Random Files...65, 66
Random mode ..63
Random Number Generation.........................44
Randomize..44
RandomString Subroutine127
READ COMPONENT ATTR Command.169
READ COMPONENT DATA Command 171
READ EEPROM Command......................149
Read From Files ..65
Read Key File...42
Read Lock ..66
READ RIGHTS LIST Command176
Read Unlock...66
Read Write Lock ...66
Read Write Unlock......................................66
ReadComponentAttr Function..................119
ReadComponentData Function.................119
ReadRightsList Function119
ReDim...24
Ref Component Attribute74
Renaming Files..59
Reserved words ...18
ResetCard...49
ResponseLength.....................................47, 51
Return...30
Right$...40
RmDir...58
Rnd ...39, 44
Rotate Operators..27
RSA Library..108

Index

237

RsaDecrypt ..109
RsaEncrypt ..109
RsaGenerateKey108
RsaOAEPDecrypt111
RsaOAEPEncrypt111
RsaPKCS1Decrypt....................................111
RsaPKCS1Encrypt110
RsaPKCS1Sign..110
RsaPKCS1Verify110
RsaPseudoPrime109
RsaPublicKey ..109
RTrim$...40
RUN state ...142
Run-Time Memory Allocation....................207

S

Save Eeprom Data...50
Screen Output ...48
Searching for Files ..60
Secure Hash Algorithms121
Secure Messaging ...81
Secure Transport ...80
SECURE TRANSPORT Command178
SecureTransport Subroutine120
Seek ..68
SELECT APPLICATION Command165
Select Case ...32
SelectApplication Subroutine118
Sequential Files....................................... 64, 65
SET STATE Command151
SetAttr..61
SetProcessorSpeed128
SG-LFSR ..195
SG-LFSR with CRC197
SHA Library ...121
Sha256Append ..122
Sha256End ...122
Sha256Hash ...122
Sha256Start ...122
ShaAppend ..122
ShaEnd...122
ShaHash ...122
ShaRandomHash.......................................122
ShaRandomSeed122
Shared File Access.......................................63
ShaStart ...122
Shift Operators..27
Shrinking Generator....................................195
Sin Mathematical Function.........................124
Single data type ..23
SinH Mathematical Function......................124
Sleep Subroutine...125
SMKeyCID .. 48, 154
Source File ..17
Source File Inclusion19
Space$..40
Spc .. 48, 64
Special Files..73
Sqrt...39
Stack Size..21

START ENCRYPTION Command153
States of the BasicCard................................142
Static data ...23
Storage Requirements....................................57
Str$...40
String data type...23
String Expressions...28
String Functions ..39
String Parameter Format54
String Parameters ..38
String$..40
String*n data type ..23
Strings, P-Code..207
Subroutine Calls ..37
Subroutine Definition33
Support Software...89
SuspendSW1SW2Processing Subroutine..127
sw... Status Codes..138
SW1...47, 138
SW1SW2 ..48, 51
SW2...47, 138
SYSTEM Instruction215
System Libraries..107
System Library Declarations36

T

T=0 Protocol ...131
T=1 Protocol ...136
Tab ..48, 64
Tan Mathematical Function........................124
TanH Mathematical Function.....................124
Terminal Program..14
Terminal Program Layout14
Terminal Virtual Machine206
Terminal-Specific Features48
TEST state ..142
Time$..50
TimeInterval Function125
Tokens ...17
Trim$..40

U

UBound...39
UCase$..40
UnixTime..125
Unlock...67
Unlock File..66
UpdateCRC16 Subroutine126
UpdateCRC32 Subroutine126
User-Defined Parameters39
User-Defined Types25

V

Val! ...40
Val& ...40
ValH..40
VERIFY Command....................................163
VerifyKeyCID......................................48, 163
Virtual card readers91
Virtual Machine...205

ZeitControl BasicCard

238238

W

While-Loop ..32
Write ..64
WRITE COMPONENT ATTR Command

..168
WRITE COMPONENT DATA Command

..170
Write Eeprom..50
WRITE EEPROM Command...................148
Write Lock...66
Write to file...64
Write Unlock ...66
WriteComponentAttr Subroutine.............119

WriteComponentData Subroutine119
WTX Request ...137
WTX Statement47, 51

Z

ZC-Basic Compiler......................................100
ZC-Basic language ..17
ZCINC Environment Variable......................19
ZCMBASIC.EXE..100
ZCMDCARD.EXE..97
ZCMDTERM.EXE95
ZCMSIM.EXE ..102
ZCPDE.EXE ...93
ZCPORT Environment Variable............51, 99

	Development Software
	The BasicCard
	Processor Cards
	Programmable Processor Cards
	BasicCard Features
	BasicCard Programs
	Applications
	Image Files
	Debug Files
	Card Program Files

	BasicCard Program Layout
	Initialisation Code
	Procedure Definitions
	File Definition Sections
	Permanent Data

	The Compact BasicCard
	The Enhanced BasicCard
	The Professional BasicCard
	The MultiApplication BasicCard

	The Terminal
	The Terminal Program
	Executable Files
	Image Files
	Debug Files
	Terminal Program Files

	Terminal Program Layout
	The Main Procedure
	Procedure Definitions
	Command Declarations
	Permanent Data

	The ZC-Basic Language
	The Source File
	Tokens
	Pre-Processor Directives
	Source File Inclusion
	Constant Definition
	Library Inclusion
	The #Pragma Directive
	Conditional Compilation
	Listing Directives
	Card State
	Number of Open File Slots
	Stack Size
	Heap Size
	Message Directive
	Error Directive
	Pre-Defined Constants

	Data Storage
	Eeprom data
	Public and Static data
	Private data

	Data Types
	Arrays
	Data Declaration
	User-Defined Types
	Expressions
	Numerical Expressions
	String Expressions
	Expressions of User-Defined Type

	Assignment Statements
	Program Control
	Exit Statements
	Labels
	GoTo
	GoSub
	If-Then-Else
	For-Loop
	While-Loop and Do-Loop
	Select Case
	Computed GoTo and Computed GoSub

	Procedure Definition
	Subroutine
	Function
	Command

	Procedure Declaration
	Command Declarations
	System Library Procedures

	Procedure Calls
	Calling a Subroutine
	Calling a Function
	Calling a Command

	Procedure Parameters
	Parameter Passing
	String Parameters
	Array Parameters
	Parameters of User-Defined Type

	Built-in Functions
	Numerical Functions
	Array Functions
	String Functions
	Encryption Functions
	Other Functions

	Encryption
	Implementing Encryption in the MultiApplication BasicCard
	Implementing Encryption in a Single-Application BasicCard
	Key Declaration
	Polynomial Declaration
	Run-Time Key Configuration
	Key Error Counter
	DES Encryption Primitives
	Certificate Generation

	Random Number Generation
	The Terminal
	The Compact and Enhanced BasicCards
	The Professional and MultiApplication BasicCards

	Error Handling
	BasicCard-Specific Features
	Customised ATR
	Application ID
	Enabling and Disabling Encryption Algorithms
	Asking the Terminal for More Time
	Pre-Defined Variables

	Terminal-Specific Features
	Screen Output
	Keyboard Input
	Communications
	PC/SC Functions
	I/O Logging
	Date and Time
	Saving Eeprom Data
	Automatic Encryption
	Giving the Card More Time
	Pre-Defined Variables

	Miscellaneous Features
	Overflow Checking
	DefType Statement
	Array Subscript Base
	Explicit Declaration of Variables and Arrays

	Technical Notes
	Parameter Size Limits
	Array Descriptor Format
	String Parameter Format
	Memory Allocation in Single-Application BasicCards
	Single-to-String Conversion

	Files and Directories
	Directory-Based File Systems
	File and Directory Names
	Path Names

	The BasicCard File System
	File Access from a Terminal Program
	Pre-Defined Files and Directories
	Storage Requirements

	File System Commands
	Directory Commands
	Creating a Directory
	Deleting a Directory
	Setting the Current Directory
	Retrieving the Current Directory
	Renaming a File or Directory
	Searching for Files
	Setting the Attributes of a File or Directory
	Retrieving the Attributes of a File or Directory
	Setting the Current Disk Drive
	Retrieving the Current Disk Drive

	Creating and Deleting Files
	Creating a File
	Deleting a File

	Opening and Closing Files
	Opening a File
	Closing Files

	Writing To Files
	Writing to Sequential Files
	Writing to Binary and Random Files

	Reading From Files
	Reading from Sequential Files
	Reading from Binary and Random Files

	File Locking and Unlocking
	Setting Read and Write Access Conditions
	Setting and Unlocking a Custom Lock
	Retrieving the Access Conditions on a File or Directory

	Miscellaneous File Operations
	File Definition Sections
	Directory Definition
	File Definition

	The Definition File FILEIO.DEF

	The MultiApplication BasicCard
	Components
	Component Types
	Component Properties
	Component Access Control

	Applications
	Application Files
	Selecting an Application
	Catching Undefined Commands
	Memory Allocation

	Special Files
	ATR File
	Card ID File
	Elliptic Curve Domain Parameters

	Application Loader Definition Section
	Common Component Attributes
	Directory Definition
	Data File Definition
	Application File Definition
	ACR Definition
	Privilege Definition
	Flag Definition
	Key Definition
	Loader Commands

	Secure Transport
	An Example
	Automatic File Authentication

	Secure Messaging
	File Authentication
	File Authentication Using OMAC
	File Authentication Using Elliptic Curve Cryptography

	Component Details
	Files
	ACRs
	Privileges
	Flags
	Keys

	Support Software
	Hardware Requirements
	Installation
	File Types
	Physical and Virtual Card Readers
	ComPort in an Executable File
	ComPort in the ZCMSIM P-Code Interpreter
	ComPort in the ZCMDTERM Terminal Program Debugger

	Windows®-Based Software
	The ZCPDE Professional Development Environment
	ZCPDE File Menu
	ZCPDE Edit Menu
	ZCPDE Project Menu
	ZCPDE Options Menu
	ZCPDE Help Menu

	The ZCMDTERM Terminal Program Debugger
	ZCMDTERM File Menu
	ZCMDTERM View Menu
	ZCMDTERM Run Menu
	ZCMDTERM Options Menu
	ZCMDTERM Help Menu

	The ZCMDCARD BasicCard Program Debugger
	ZCMDCARD File Menu
	ZCMDCARD Application Menu
	ZCMDCARD View Menu
	ZCMDCARD Run Menu
	ZCMDCARD Card Menu
	ZCMDCARD Options Menu
	ZCMDCARD Help Menu

	Command-Line Software
	The ZC-Basic Compiler ZCMBASIC.EXE
	The P-Code Interpreter ZCMSIM.EXE
	The Card Loader BCLOAD.EXE
	The Key Generator KEYGEN.EXE
	The Key Loader BCKEYS.EXE

	System Libraries
	RSA: The Rivest-Shamir-Adleman Library
	Overview
	Key Generation
	Cryptographic Primitives
	Signature Scheme With Appendix
	Encryption Schemes

	AES: The Advanced Encryption Standard Library
	The Elliptic Curve Libraries
	Loading an Elliptic Curve Library
	Setting the Elliptic Curve Parameters
	Key Generation
	Computing a Public Key from a Private Key
	Generating a Digital Signature
	Verifying a Digital Signature
	Session Key Generation
	Binary Representation Formats
	Conformance Specification

	The COMPONENT Library
	The EAX Library
	The OMAC Library
	SHA: The Secure Hash Algorithm Library
	Hashing Functions
	Pseudo-Random Number Generation

	IDEA: International Data Encryption Algorithm
	IDEA Functions

	MATH: Mathematical Functions
	Error Codes
	Integer Rounding
	Exponentiation
	Trigonometric Functions
	Hyperbolic Functions
	Mathematical Constants

	MISC: Miscellaneous Procedures
	Timing Functions
	Suspending the Program
	Executing a Command Line
	CRC Calculations
	Making a Noise
	Fast EEPROM Writes
	Random String
	SW1-SW2 Processing
	Card Serial Number
	Free Memory
	Power Management

	Communications
	Overview
	Answer To Reset
	The T=0 Protocol
	TPDU Transmission
	APDU Transmission by T=0
	Case 1: No Incoming Data or Outgoing Data
	Case 2: Outgoing Data Only
	Case 3: Incoming Data Only
	Case 4: Incoming and Outgoing Data

	The T=1 Protocol
	APDU Transmission by T=1
	Structure of an I-block
	WTX Request

	Commands and Responses
	Status Bytes SW1 and SW2
	BasicCard Operating System
	BasicCard P-Code Interpreter
	Terminal P-Code Interpreter

	Pre-Defined Commands
	States of the BasicCard
	Pre-Defined Commands – a Summary
	The GET STATE Command
	The EEPROM SIZE Command
	The CLEAR EEPROM Command
	The WRITE EEPROM Command
	The READ EEPROM Command
	The EEPROM CRC Command
	The SET STATE Command
	The GET APPLICATION ID Command
	The START ENCRYPTION Command
	The END ENCRYPTION Command
	The ECHO Command
	The ASSIGN NAD Command
	The FILE IO Command
	The GET CHALLENGE Command
	The EXTERNAL AUTHENTICATE Command
	The INTERNAL AUTHENTICATE Command
	The VERIFY Command
	The GET FREE MEMORY Command
	The SELECT APPLICATION Command
	The CREATE COMPONENT Command
	The DELETE COMPONENT Command
	The WRITE COMPONENT ATTR Command
	The READ COMPONENT ATTR Command
	The WRITE COMPONENT DATA Command
	The READ COMPONENT DATA Command
	The FIND COMPONENT Command
	The COMPONENT NAME Command
	The GRANT PRIVILEGE Command
	The AUTHENTICATE FILE Command
	The READ RIGHTS LIST Command
	The LOAD SEQUENCE Command
	The SECURE TRANSPORT Command

	The Command Definition File COMMANDS.DEF

	Encryption Algorithms
	The DES Algorithm
	Implementation of DES in the BasicCard
	The Message Encryption Functions MEK , MEDE2K , and MEDE3K
	The Message Decryption Functions MDK , MDED2K , and MDED3K
	The Initialisation Vector
	Encryption of Commands in the Enhanced BasicCard
	Encryption of Responses in the Enhanced BasicCard
	Encryption of Commands in the Professional BasicCard
	Encryption of Responses in the Professional BasicCard

	Certificate Generation Using DES
	The AES Algorithm
	Implementation of AES in the Professional BasicCard
	The Message Encryption Function AES-MEK
	The Message Decryption Function AES-MDK
	The Initialisation Vector
	Encryption of Commands
	Encryption of Responses

	The EAX Algorithm
	The CTR Algorithm
	Tweaked OMAC
	EAX

	Implementation of EAX in the BasicCard
	The Nonce
	Encryption of Commands
	Encryption of Responses

	The OMAC Algorithm
	Implementation of OMAC in the BasicCard
	Authentication of Commands
	Authentication of Responses

	The SG-LFSR Algorithm
	Implementation of SG-LFSR in the Compact BasicCard
	SG-LFSR with CRC
	Encryption – a Worked Example
	The Source Code
	GET APPLICATION ID Command and Response
	Unencrypted ECHO Command and Response
	START ENCRYPTION (Algorithm = AlgTripleDesEDE2Crc)
	Encrypted ECHO Command (Algorithm = AlgTripleDesEDE2Crc)
	END ENCRYPTION
	START ENCRYPTION (Algorithm = AlgEaxAes192)
	Encrypted ECHO Command (Algorithm = AlgEaxAes192)
	END ENCRYPTION

	The ZC-Basic Virtual Machine
	The BasicCard Virtual Machine
	The Compact BasicCard
	The Enhanced BasicCard
	The Professional BasicCard
	The MultiApplication BasicCard
	Memory Layout in the BasicCard

	The Terminal Virtual Machine
	The P-Code Stack
	Run-Time Memory Allocation
	Data Types
	Strings

	P-Code Instructions
	Miscellaneous Instructions
	Data Conversion Instructions
	Array Instructions
	String Instructions
	Data Initialisation Instructions
	Floating-Point Instructions
	The XMIT Command Call Instruction
	Abbreviated Instructions

	The SYSTEM Instruction
	SYSTEM Functions in the Compact BasicCard
	SYSTEM Functions in Later BasicCards
	SYSTEM Functions in the Terminal
	FILE SYSTEM Functions
	System Library Procedures

	Output File Formats
	ZeitControl Image File Format
	Signature Section
	Code Certification Section

	ZeitControl Debug File Format
	Signature Section

	Application File Format
	List File Format
	Map File Format

	Index

